Modelling investigation of interaction between Arctic sea ice and storms: insights from case studies and climatological hindcast simulations

Dissertation (Ph.D.) University of Alaska Fairbanks, 2019 The goal of this study is to improve understanding of atmosphere, sea ice, and ocean interactions in the context of Arctic storm activities. The reduction of Arctic sea ice extent, increase in ocean water temperatures, and changes of atmosphe...

Full description

Bibliographic Details
Main Author: Semenov, Alexander
Other Authors: Zhang, Xiangdong, Bhatt, Uma, Hutchings, Jennifer, Mölders, Nicole
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/11122/10538
id ftunivalaska:oai:scholarworks.alaska.edu:11122/10538
record_format openpolar
spelling ftunivalaska:oai:scholarworks.alaska.edu:11122/10538 2023-05-15T14:18:11+02:00 Modelling investigation of interaction between Arctic sea ice and storms: insights from case studies and climatological hindcast simulations Semenov, Alexander Zhang, Xiangdong Bhatt, Uma Hutchings, Jennifer Mölders, Nicole 2019-05 http://hdl.handle.net/11122/10538 en_US eng http://hdl.handle.net/11122/10538 Department of Atmospheric Science sea ice Arctic Ocean cyclones storms windstorms ocean-atmosphere interaction sea ice drift Dissertation phd 2019 ftunivalaska 2023-02-23T21:37:31Z Dissertation (Ph.D.) University of Alaska Fairbanks, 2019 The goal of this study is to improve understanding of atmosphere, sea ice, and ocean interactions in the context of Arctic storm activities. The reduction of Arctic sea ice extent, increase in ocean water temperatures, and changes of atmospheric circulation have been manifested in the Arctic Ocean along with the large surface air temperature increase during recent decades. All of these changes may change the way in which atmosphere, sea ice, and ocean interact, which may in turn feedback to Arctic surface air warming. To achieve the goal, we employed an integrative approach including analysis of modeling simulation results and conducting specifically designed model sensitivity experiments. The novelty of this study is linking synoptic scale storms to large-scale changes in sea ice and atmospheric circulation. The models were used in this study range from the regional fully coupled Arctic climate model HIRHAM-NAOSIM to the ocean-sea ice component model of the Community Earth System Model CESM and the Weather Research and Forecasting (WRF) model. Analysis of HIRHAM-NAOSIM simulation outputs shows regionally dependent variability of storm count with a higher number of storms over the Atlantic side than over the Pacific side. High-resolution simulations also reproduce higher number of storms than lower resolution reanalysis dataset. This is because the high-resolution model may capture more shallow and small size storms. As an integrated consequence, the composite analysis shows that more numerous intense storms produce low-pressure systems centered over the Barents-Kara-Laptev seas and the Chukchi-East Siberian seas, leading to anomalous cyclonic circulation over the Atlantic Arctic Ocean and Pacific Arctic Ocean. Correspondingly, anomalous sea ice transport occurs, enhancing sea ice outflow out of the Barents-Kara-Laptev sea ice and weakening sea ice inflow into the Chukchi-Beaufort seas from the thick ice area north of the Canadian Archipelago. This ... Doctoral or Postdoctoral Thesis Archipelago Arctic Arctic Ocean Atlantic Arctic Atlantic-Arctic Canadian Archipelago Chukchi Kara-Laptev laptev Laptev Sea Pacific Arctic Sea ice Alaska University of Alaska: ScholarWorks@UA Arctic Arctic Ocean Fairbanks Laptev Sea Pacific
institution Open Polar
collection University of Alaska: ScholarWorks@UA
op_collection_id ftunivalaska
language English
topic sea ice
Arctic Ocean
cyclones
storms
windstorms
ocean-atmosphere interaction
sea ice drift
spellingShingle sea ice
Arctic Ocean
cyclones
storms
windstorms
ocean-atmosphere interaction
sea ice drift
Semenov, Alexander
Modelling investigation of interaction between Arctic sea ice and storms: insights from case studies and climatological hindcast simulations
topic_facet sea ice
Arctic Ocean
cyclones
storms
windstorms
ocean-atmosphere interaction
sea ice drift
description Dissertation (Ph.D.) University of Alaska Fairbanks, 2019 The goal of this study is to improve understanding of atmosphere, sea ice, and ocean interactions in the context of Arctic storm activities. The reduction of Arctic sea ice extent, increase in ocean water temperatures, and changes of atmospheric circulation have been manifested in the Arctic Ocean along with the large surface air temperature increase during recent decades. All of these changes may change the way in which atmosphere, sea ice, and ocean interact, which may in turn feedback to Arctic surface air warming. To achieve the goal, we employed an integrative approach including analysis of modeling simulation results and conducting specifically designed model sensitivity experiments. The novelty of this study is linking synoptic scale storms to large-scale changes in sea ice and atmospheric circulation. The models were used in this study range from the regional fully coupled Arctic climate model HIRHAM-NAOSIM to the ocean-sea ice component model of the Community Earth System Model CESM and the Weather Research and Forecasting (WRF) model. Analysis of HIRHAM-NAOSIM simulation outputs shows regionally dependent variability of storm count with a higher number of storms over the Atlantic side than over the Pacific side. High-resolution simulations also reproduce higher number of storms than lower resolution reanalysis dataset. This is because the high-resolution model may capture more shallow and small size storms. As an integrated consequence, the composite analysis shows that more numerous intense storms produce low-pressure systems centered over the Barents-Kara-Laptev seas and the Chukchi-East Siberian seas, leading to anomalous cyclonic circulation over the Atlantic Arctic Ocean and Pacific Arctic Ocean. Correspondingly, anomalous sea ice transport occurs, enhancing sea ice outflow out of the Barents-Kara-Laptev sea ice and weakening sea ice inflow into the Chukchi-Beaufort seas from the thick ice area north of the Canadian Archipelago. This ...
author2 Zhang, Xiangdong
Bhatt, Uma
Hutchings, Jennifer
Mölders, Nicole
format Doctoral or Postdoctoral Thesis
author Semenov, Alexander
author_facet Semenov, Alexander
author_sort Semenov, Alexander
title Modelling investigation of interaction between Arctic sea ice and storms: insights from case studies and climatological hindcast simulations
title_short Modelling investigation of interaction between Arctic sea ice and storms: insights from case studies and climatological hindcast simulations
title_full Modelling investigation of interaction between Arctic sea ice and storms: insights from case studies and climatological hindcast simulations
title_fullStr Modelling investigation of interaction between Arctic sea ice and storms: insights from case studies and climatological hindcast simulations
title_full_unstemmed Modelling investigation of interaction between Arctic sea ice and storms: insights from case studies and climatological hindcast simulations
title_sort modelling investigation of interaction between arctic sea ice and storms: insights from case studies and climatological hindcast simulations
publishDate 2019
url http://hdl.handle.net/11122/10538
geographic Arctic
Arctic Ocean
Fairbanks
Laptev Sea
Pacific
geographic_facet Arctic
Arctic Ocean
Fairbanks
Laptev Sea
Pacific
genre Archipelago
Arctic
Arctic Ocean
Atlantic Arctic
Atlantic-Arctic
Canadian Archipelago
Chukchi
Kara-Laptev
laptev
Laptev Sea
Pacific Arctic
Sea ice
Alaska
genre_facet Archipelago
Arctic
Arctic Ocean
Atlantic Arctic
Atlantic-Arctic
Canadian Archipelago
Chukchi
Kara-Laptev
laptev
Laptev Sea
Pacific Arctic
Sea ice
Alaska
op_relation http://hdl.handle.net/11122/10538
Department of Atmospheric Science
_version_ 1766289890776973312