Microbial ecology and biodegradation potential of a sulfolane-contaminated, subarctic aquifer
Dissertation (Ph.D.) University of Alaska Fairbanks, 2019 Contaminant biodegradation is one of many ecosystem services aquifer microbiota can provide to humans. Sulfolane is a water-soluble emerging contaminant that is associated with one of the largest contaminated groundwater plumes in the state o...
Main Author: | |
---|---|
Other Authors: | , , , |
Format: | Doctoral or Postdoctoral Thesis |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | http://hdl.handle.net/11122/10508 |
id |
ftunivalaska:oai:scholarworks.alaska.edu:11122/10508 |
---|---|
record_format |
openpolar |
spelling |
ftunivalaska:oai:scholarworks.alaska.edu:11122/10508 2023-05-15T17:39:59+02:00 Microbial ecology and biodegradation potential of a sulfolane-contaminated, subarctic aquifer Kasanke, Christopher P. Leigh, Mary Beth Barnes, David Jones, Jeremy Takebayashi, Naoki 2019-05 http://hdl.handle.net/11122/10508 en_US eng http://hdl.handle.net/11122/10508 sulfones biodegradation Alaska North Pole groundwater pollution purification aquifers Dissertation phd 2019 ftunivalaska 2023-02-23T21:37:29Z Dissertation (Ph.D.) University of Alaska Fairbanks, 2019 Contaminant biodegradation is one of many ecosystem services aquifer microbiota can provide to humans. Sulfolane is a water-soluble emerging contaminant that is associated with one of the largest contaminated groundwater plumes in the state of Alaska. Despite being widely used, the biodegradation pathways and environmental fate of sulfolane are poorly understood. In this study, we investigated the biodegradation of sulfolane by the microbial community indigenous to this contaminated subarctic aquifer in order to better understand the mechanisms and rates of loss, as well as the environmental factors controlling them. First, we conducted aerobic and anaerobic microcosm studies to assess the biodegradation potential of contaminated subarctic aquifer substrate and concluded that the aquifer microbial community can readily metabolize sulfolane, but only in the presence of oxygen, which is at low concentration in situ. We also investigated the impacts of nutrient limitations and hydrocarbon co-contamination on sulfolane biodegradation rates. To identify exactly which community members were actively degrading sulfolane, we combined DNA-based stable isotope probing (SIP) with genome-resolved metagenomics methods. We found a Rhodoferax sp. to be the primary sulfolane degrading microorganism in this system and obtained a near-complete genomic sequence of this organism, which allowed us to propose a new metabolic model for sulfolane biodegradation. Finally, we assessed the distribution of sulfolane-degrading bacteria throughout the contaminated subarctic aquifer by sequencing 16S rRNA genes from 100 groundwater samples and two sulfolane treatment systems and screening for the sulfolane degrader previously identified using SIP. This assessment revealed that sulfolane biodegradation potential is widespread throughout the aquifer but is not likely occurring under normal conditions. However, the sulfolane-metabolizing Rhodoferax sp. was the most dominant microbe in ... Doctoral or Postdoctoral Thesis North Pole Subarctic Alaska University of Alaska: ScholarWorks@UA Fairbanks North Pole |
institution |
Open Polar |
collection |
University of Alaska: ScholarWorks@UA |
op_collection_id |
ftunivalaska |
language |
English |
topic |
sulfones biodegradation Alaska North Pole groundwater pollution purification aquifers |
spellingShingle |
sulfones biodegradation Alaska North Pole groundwater pollution purification aquifers Kasanke, Christopher P. Microbial ecology and biodegradation potential of a sulfolane-contaminated, subarctic aquifer |
topic_facet |
sulfones biodegradation Alaska North Pole groundwater pollution purification aquifers |
description |
Dissertation (Ph.D.) University of Alaska Fairbanks, 2019 Contaminant biodegradation is one of many ecosystem services aquifer microbiota can provide to humans. Sulfolane is a water-soluble emerging contaminant that is associated with one of the largest contaminated groundwater plumes in the state of Alaska. Despite being widely used, the biodegradation pathways and environmental fate of sulfolane are poorly understood. In this study, we investigated the biodegradation of sulfolane by the microbial community indigenous to this contaminated subarctic aquifer in order to better understand the mechanisms and rates of loss, as well as the environmental factors controlling them. First, we conducted aerobic and anaerobic microcosm studies to assess the biodegradation potential of contaminated subarctic aquifer substrate and concluded that the aquifer microbial community can readily metabolize sulfolane, but only in the presence of oxygen, which is at low concentration in situ. We also investigated the impacts of nutrient limitations and hydrocarbon co-contamination on sulfolane biodegradation rates. To identify exactly which community members were actively degrading sulfolane, we combined DNA-based stable isotope probing (SIP) with genome-resolved metagenomics methods. We found a Rhodoferax sp. to be the primary sulfolane degrading microorganism in this system and obtained a near-complete genomic sequence of this organism, which allowed us to propose a new metabolic model for sulfolane biodegradation. Finally, we assessed the distribution of sulfolane-degrading bacteria throughout the contaminated subarctic aquifer by sequencing 16S rRNA genes from 100 groundwater samples and two sulfolane treatment systems and screening for the sulfolane degrader previously identified using SIP. This assessment revealed that sulfolane biodegradation potential is widespread throughout the aquifer but is not likely occurring under normal conditions. However, the sulfolane-metabolizing Rhodoferax sp. was the most dominant microbe in ... |
author2 |
Leigh, Mary Beth Barnes, David Jones, Jeremy Takebayashi, Naoki |
format |
Doctoral or Postdoctoral Thesis |
author |
Kasanke, Christopher P. |
author_facet |
Kasanke, Christopher P. |
author_sort |
Kasanke, Christopher P. |
title |
Microbial ecology and biodegradation potential of a sulfolane-contaminated, subarctic aquifer |
title_short |
Microbial ecology and biodegradation potential of a sulfolane-contaminated, subarctic aquifer |
title_full |
Microbial ecology and biodegradation potential of a sulfolane-contaminated, subarctic aquifer |
title_fullStr |
Microbial ecology and biodegradation potential of a sulfolane-contaminated, subarctic aquifer |
title_full_unstemmed |
Microbial ecology and biodegradation potential of a sulfolane-contaminated, subarctic aquifer |
title_sort |
microbial ecology and biodegradation potential of a sulfolane-contaminated, subarctic aquifer |
publishDate |
2019 |
url |
http://hdl.handle.net/11122/10508 |
geographic |
Fairbanks North Pole |
geographic_facet |
Fairbanks North Pole |
genre |
North Pole Subarctic Alaska |
genre_facet |
North Pole Subarctic Alaska |
op_relation |
http://hdl.handle.net/11122/10508 |
_version_ |
1766140755244482560 |