Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse –a model–data comparison
International audience At the junction of greenhouse and icehouse climate states, the Eocene–Oligocene Transition (EOT) is a key moment in Cenozoic climate history. While it is associated with severe extinctions and biodiversity turnovers on land, the role of terrestrial climate evolution remains po...
Published in: | Climate of the Past |
---|---|
Main Authors: | , , , , , , |
Other Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2022
|
Subjects: | |
Online Access: | https://insu.hal.science/insu-03592787 https://insu.hal.science/insu-03592787/document https://insu.hal.science/insu-03592787/file/cp-18-341-2022.pdf https://doi.org/10.5194/cp-18-341-2022 |
id |
ftunivaixmarseil:oai:HAL:insu-03592787v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Aix-Marseille Université: HAL |
op_collection_id |
ftunivaixmarseil |
language |
English |
topic |
[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology |
spellingShingle |
[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology Toumoulin, Agathe Tardif, Delphine Donnadieu, Yannick Licht, Alexis Ladant, Jean-Baptiste Kunzmann, Lutz Dupont-Nivet, Guillaume Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse –a model–data comparison |
topic_facet |
[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology |
description |
International audience At the junction of greenhouse and icehouse climate states, the Eocene–Oligocene Transition (EOT) is a key moment in Cenozoic climate history. While it is associated with severe extinctions and biodiversity turnovers on land, the role of terrestrial climate evolution remains poorly resolved, especially the associated changes in seasonality. Some paleobotanical and geochemical continental records in parts of the Northern Hemisphere suggest the EOT is associated with a marked cooling in winter, leading to the development of more pronounced seasons (i.e., an increase in the mean annual range of temperature, MATR). However, the MATR increase has been barely studied by climate models and large uncertainties remain on its origin, geographical extent and impact. In order to better understand and describe temperature seasonality changes between the middle Eocene and the early Oligocene, we use the Earth system model IPSL-CM5A2 and a set of simulations reconstructing the EOT through three major climate forcings: pCO2 decrease (1120, 840 and 560 ppm), the Antarctic ice-sheet (AIS) formation and the associated sea-level decrease. Our simulations suggest that pCO2 lowering alone is not sufficient to explain the seasonality evolution described by the data through the EOT but rather that the combined effects of pCO2, AIS formation and increased continentality provide the best data–model agreement. pCO2 decrease induces a zonal pattern with alternating increasing and decreasing seasonality bands particularly strong in the northern high latitudes (up to 8 ∘C MATR increase) due to sea-ice and surface albedo feedback. Conversely, the onset of the AIS is responsible for a more constant surface albedo yearly, which leads to a strong decrease in seasonality in the southern midlatitudes to high latitudes (>40∘ S). Finally, continental areas that emerged due to the sea-level lowering cause the largest increase in seasonality and explain most of the global heterogeneity in MATR changes (ΔMATR) patterns. The ... |
author2 |
Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE) Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Institut de Physique du Globe de Paris (IPGP (UMR_7154)) Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Modélisation du climat (CLIM) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberg – Leibniz Institution for Biodiversity and Earth System Research - Senckenberg Gesellschaft für Naturforschung Leibniz Association-Leibniz Association Géosciences Rennes (GR) Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR) Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS) University of Potsdam = Universität Potsdam This research has been supported by ERC MAGIC (grant no. 649081) and ANR AMOR (grant no. ANR-16- CE31-0020). The article processing charges for this open-access publication were covered by ANR AMOR (ANR-16-CE31-0020). ANR-16-CE31-0020,AMOR,Reconstruction modèle-données des climats du Cénozoique(2016) European Project: 649081,H2020,ERC-2014-CoG,MAGIC(2015) |
format |
Article in Journal/Newspaper |
author |
Toumoulin, Agathe Tardif, Delphine Donnadieu, Yannick Licht, Alexis Ladant, Jean-Baptiste Kunzmann, Lutz Dupont-Nivet, Guillaume |
author_facet |
Toumoulin, Agathe Tardif, Delphine Donnadieu, Yannick Licht, Alexis Ladant, Jean-Baptiste Kunzmann, Lutz Dupont-Nivet, Guillaume |
author_sort |
Toumoulin, Agathe |
title |
Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse –a model–data comparison |
title_short |
Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse –a model–data comparison |
title_full |
Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse –a model–data comparison |
title_fullStr |
Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse –a model–data comparison |
title_full_unstemmed |
Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse –a model–data comparison |
title_sort |
evolution of continental temperature seasonality from the eocene greenhouse to the oligocene icehouse –a model–data comparison |
publisher |
HAL CCSD |
publishDate |
2022 |
url |
https://insu.hal.science/insu-03592787 https://insu.hal.science/insu-03592787/document https://insu.hal.science/insu-03592787/file/cp-18-341-2022.pdf https://doi.org/10.5194/cp-18-341-2022 |
genre |
Antarc* Antarctic Ice Sheet Sea ice |
genre_facet |
Antarc* Antarctic Ice Sheet Sea ice |
op_source |
ISSN: 1814-9324 EISSN: 1814-9332 Climate of the Past https://insu.hal.science/insu-03592787 Climate of the Past, 2022, 18 (2), pp.341 - 362. ⟨10.5194/cp-18-341-2022⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.5194/cp-18-341-2022 info:eu-repo/grantAgreement//649081/EU/Monsoons of Asia caused Greenhouse to Icehouse Cooling/MAGIC insu-03592787 https://insu.hal.science/insu-03592787 https://insu.hal.science/insu-03592787/document https://insu.hal.science/insu-03592787/file/cp-18-341-2022.pdf doi:10.5194/cp-18-341-2022 |
op_rights |
http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.5194/cp-18-341-2022 |
container_title |
Climate of the Past |
container_volume |
18 |
container_issue |
2 |
container_start_page |
341 |
op_container_end_page |
362 |
_version_ |
1797574059912855552 |
spelling |
ftunivaixmarseil:oai:HAL:insu-03592787v1 2024-04-28T08:02:48+00:00 Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse –a model–data comparison Toumoulin, Agathe Tardif, Delphine Donnadieu, Yannick Licht, Alexis Ladant, Jean-Baptiste Kunzmann, Lutz Dupont-Nivet, Guillaume Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE) Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Institut de Physique du Globe de Paris (IPGP (UMR_7154)) Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Modélisation du climat (CLIM) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberg – Leibniz Institution for Biodiversity and Earth System Research - Senckenberg Gesellschaft für Naturforschung Leibniz Association-Leibniz Association Géosciences Rennes (GR) Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR) Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS) University of Potsdam = Universität Potsdam This research has been supported by ERC MAGIC (grant no. 649081) and ANR AMOR (grant no. ANR-16- CE31-0020). The article processing charges for this open-access publication were covered by ANR AMOR (ANR-16-CE31-0020). ANR-16-CE31-0020,AMOR,Reconstruction modèle-données des climats du Cénozoique(2016) European Project: 649081,H2020,ERC-2014-CoG,MAGIC(2015) 2022 https://insu.hal.science/insu-03592787 https://insu.hal.science/insu-03592787/document https://insu.hal.science/insu-03592787/file/cp-18-341-2022.pdf https://doi.org/10.5194/cp-18-341-2022 en eng HAL CCSD European Geosciences Union (EGU) info:eu-repo/semantics/altIdentifier/doi/10.5194/cp-18-341-2022 info:eu-repo/grantAgreement//649081/EU/Monsoons of Asia caused Greenhouse to Icehouse Cooling/MAGIC insu-03592787 https://insu.hal.science/insu-03592787 https://insu.hal.science/insu-03592787/document https://insu.hal.science/insu-03592787/file/cp-18-341-2022.pdf doi:10.5194/cp-18-341-2022 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1814-9324 EISSN: 1814-9332 Climate of the Past https://insu.hal.science/insu-03592787 Climate of the Past, 2022, 18 (2), pp.341 - 362. ⟨10.5194/cp-18-341-2022⟩ [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology info:eu-repo/semantics/article Journal articles 2022 ftunivaixmarseil https://doi.org/10.5194/cp-18-341-2022 2024-04-04T17:30:39Z International audience At the junction of greenhouse and icehouse climate states, the Eocene–Oligocene Transition (EOT) is a key moment in Cenozoic climate history. While it is associated with severe extinctions and biodiversity turnovers on land, the role of terrestrial climate evolution remains poorly resolved, especially the associated changes in seasonality. Some paleobotanical and geochemical continental records in parts of the Northern Hemisphere suggest the EOT is associated with a marked cooling in winter, leading to the development of more pronounced seasons (i.e., an increase in the mean annual range of temperature, MATR). However, the MATR increase has been barely studied by climate models and large uncertainties remain on its origin, geographical extent and impact. In order to better understand and describe temperature seasonality changes between the middle Eocene and the early Oligocene, we use the Earth system model IPSL-CM5A2 and a set of simulations reconstructing the EOT through three major climate forcings: pCO2 decrease (1120, 840 and 560 ppm), the Antarctic ice-sheet (AIS) formation and the associated sea-level decrease. Our simulations suggest that pCO2 lowering alone is not sufficient to explain the seasonality evolution described by the data through the EOT but rather that the combined effects of pCO2, AIS formation and increased continentality provide the best data–model agreement. pCO2 decrease induces a zonal pattern with alternating increasing and decreasing seasonality bands particularly strong in the northern high latitudes (up to 8 ∘C MATR increase) due to sea-ice and surface albedo feedback. Conversely, the onset of the AIS is responsible for a more constant surface albedo yearly, which leads to a strong decrease in seasonality in the southern midlatitudes to high latitudes (>40∘ S). Finally, continental areas that emerged due to the sea-level lowering cause the largest increase in seasonality and explain most of the global heterogeneity in MATR changes (ΔMATR) patterns. The ... Article in Journal/Newspaper Antarc* Antarctic Ice Sheet Sea ice Aix-Marseille Université: HAL Climate of the Past 18 2 341 362 |