Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia)

International audience Approaches of geographic ontologies can help to overcome the problems of ambiguity and uncertainty of remote sensing data analysis for modeling the landscapes as a multidimensional geographic object of research. Image analysis based on the geographic ontologies allows to recog...

Full description

Bibliographic Details
Published in:Proceedings of the 6th International Conference on Geographical Information Systems Theory, Applications and Management
Main Authors: Gadal, Sébastien, Zakharov, Moisei, Kamičaitytė, Jūratė, Danilov, Yuri
Other Authors: North-Eastern Federal University, Étude des Structures, des Processus d’Adaptation et des Changements de l’Espace (ESPACE), Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA), Aix Marseille Université (AMU), Kaunas University of Technology (KTU), Polar Urban Centers PUR, CNRS PEPS INEE RICOCHET (A la Recherche de l’Intégration des Connaissances dans l’Observation des CHangements Environnementaux : mise en œuvre d’une recherche-aTelier en Sibérie Orientale (Khamagatta)), Polytechnic Institute of Setúbal/IPS, Knowledge Systems Institute, ATHENA Research & Innovation Information Technologies, Cédric Grueau, Rober Laurini, Lemonia Ragia, IEEE Geoscience and Remote Sensing Society, ACM SIGSPATIAL
Format: Conference Object
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://amu.hal.science/hal-02554659
https://amu.hal.science/hal-02554659/document
https://amu.hal.science/hal-02554659/file/GISTAM_2020_59_CR.pdf
https://doi.org/10.5220/0009569101120118
id ftunivaixmarseil:oai:HAL:hal-02554659v1
record_format openpolar
institution Open Polar
collection Aix-Marseille Université: HAL
op_collection_id ftunivaixmarseil
language English
topic Geographic Ontology
Image Analysis
Knowledge Database
Image Processing
Alas Landscape
Remote Sensing
Arctic
Russia
Artificial intelligence methods
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
[SHS.STAT]Humanities and Social Sciences/Methods and statistics
[SDE.ES]Environmental Sciences/Environment and Society
[SHS.GEO]Humanities and Social Sciences/Geography
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
spellingShingle Geographic Ontology
Image Analysis
Knowledge Database
Image Processing
Alas Landscape
Remote Sensing
Arctic
Russia
Artificial intelligence methods
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
[SHS.STAT]Humanities and Social Sciences/Methods and statistics
[SDE.ES]Environmental Sciences/Environment and Society
[SHS.GEO]Humanities and Social Sciences/Geography
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
Gadal, Sébastien
Zakharov, Moisei
Kamičaitytė, Jūratė
Danilov, Yuri
Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia)
topic_facet Geographic Ontology
Image Analysis
Knowledge Database
Image Processing
Alas Landscape
Remote Sensing
Arctic
Russia
Artificial intelligence methods
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
[SHS.STAT]Humanities and Social Sciences/Methods and statistics
[SDE.ES]Environmental Sciences/Environment and Society
[SHS.GEO]Humanities and Social Sciences/Geography
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
description International audience Approaches of geographic ontologies can help to overcome the problems of ambiguity and uncertainty of remote sensing data analysis for modeling the landscapes as a multidimensional geographic object of research. Image analysis based on the geographic ontologies allows to recognize the elementary characteristics of the alas landscapes and their complexity. The methodology developed includes three levels of geographic object recognition: (1) the landscape land cover classification using Support Vector Machine (SVM) and Spectral Angle Mapper (SAM) classifiers; (2) the object-based image analysis (OBIA) used for the identification of alas landscape objects according to their morphologic structures using the Decision Tree Learning algorithm; (3) alas landscape's identification and categorization integrating vegetation objects, territorial organizations, and human cognitive knowledge reflected on the geo-linguistic object-oriented database made in Central Ya-kutia. The result gives an ontology-based alas landscape model as a system of geographic objects (forests, grasslands, arable lands, termokarst lakes, rural areas, farms, repartition of built-up areas, etc.) developed under conditions of permafrost and with a high sensitivity to the climate change and its local variabilities. The proposed approach provides a multidimensional reliable recognition of alas landscape objects by remote sensing images analysis integrating human semantic knowledge model of Central Yakutia in the subarctic Siberia. This model requires to conduct a multitemporal dynamic analysis for the sustainability assessment and land management.
author2 North-Eastern Federal University
Étude des Structures, des Processus d’Adaptation et des Changements de l’Espace (ESPACE)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
Aix Marseille Université (AMU)
Kaunas University of Technology (KTU)
Polar Urban Centers PUR
CNRS PEPS INEE RICOCHET (A la Recherche de l’Intégration des Connaissances dans l’Observation des CHangements Environnementaux : mise en œuvre d’une recherche-aTelier en Sibérie Orientale (Khamagatta))
Polytechnic Institute of Setúbal/IPS
Knowledge Systems Institute
ATHENA Research & Innovation Information Technologies
Cédric Grueau
Rober Laurini
Lemonia Ragia
IEEE Geoscience and Remote Sensing Society
ACM SIGSPATIAL
format Conference Object
author Gadal, Sébastien
Zakharov, Moisei
Kamičaitytė, Jūratė
Danilov, Yuri
author_facet Gadal, Sébastien
Zakharov, Moisei
Kamičaitytė, Jūratė
Danilov, Yuri
author_sort Gadal, Sébastien
title Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia)
title_short Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia)
title_full Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia)
title_fullStr Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia)
title_full_unstemmed Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia)
title_sort alas landscape modeling by remote sensing image analysis and geographic ontology. study case of central yakutia (russia)
publisher HAL CCSD
publishDate 2020
url https://amu.hal.science/hal-02554659
https://amu.hal.science/hal-02554659/document
https://amu.hal.science/hal-02554659/file/GISTAM_2020_59_CR.pdf
https://doi.org/10.5220/0009569101120118
op_coverage Online Streaming, Portugal
geographic Arctic
geographic_facet Arctic
genre Arctic
Climate change
permafrost
Subarctic
Yakutia
Siberia
termokarst
genre_facet Arctic
Climate change
permafrost
Subarctic
Yakutia
Siberia
termokarst
op_source 6th International Conference on Geographic Information Sytems Theory, Applications and Management
https://amu.hal.science/hal-02554659
6th International Conference on Geographic Information Sytems Theory, Applications and Management, Polytechnic Institute of Setúbal/IPS; Knowledge Systems Institute; ATHENA Research & Innovation Information Technologies, May 2020, Online Streaming, Portugal. pp.112-118, ⟨10.5220/0009569101120118⟩
http://www.insticc.org/node/TechnicalProgram/GISTAM/2020/presentationDetails/95691
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5220/0009569101120118
hal-02554659
https://amu.hal.science/hal-02554659
https://amu.hal.science/hal-02554659/document
https://amu.hal.science/hal-02554659/file/GISTAM_2020_59_CR.pdf
doi:10.5220/0009569101120118
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5220/0009569101120118
container_title Proceedings of the 6th International Conference on Geographical Information Systems Theory, Applications and Management
container_start_page 112
op_container_end_page 118
_version_ 1796305856095059968
spelling ftunivaixmarseil:oai:HAL:hal-02554659v1 2024-04-14T08:08:25+00:00 Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia) Gadal, Sébastien Zakharov, Moisei Kamičaitytė, Jūratė Danilov, Yuri North-Eastern Federal University Étude des Structures, des Processus d’Adaptation et des Changements de l’Espace (ESPACE) Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA) Aix Marseille Université (AMU) Kaunas University of Technology (KTU) Polar Urban Centers PUR CNRS PEPS INEE RICOCHET (A la Recherche de l’Intégration des Connaissances dans l’Observation des CHangements Environnementaux : mise en œuvre d’une recherche-aTelier en Sibérie Orientale (Khamagatta)) Polytechnic Institute of Setúbal/IPS Knowledge Systems Institute ATHENA Research & Innovation Information Technologies Cédric Grueau Rober Laurini Lemonia Ragia IEEE Geoscience and Remote Sensing Society ACM SIGSPATIAL Online Streaming, Portugal 2020-05-07 https://amu.hal.science/hal-02554659 https://amu.hal.science/hal-02554659/document https://amu.hal.science/hal-02554659/file/GISTAM_2020_59_CR.pdf https://doi.org/10.5220/0009569101120118 en eng HAL CCSD SCITEPRESS info:eu-repo/semantics/altIdentifier/doi/10.5220/0009569101120118 hal-02554659 https://amu.hal.science/hal-02554659 https://amu.hal.science/hal-02554659/document https://amu.hal.science/hal-02554659/file/GISTAM_2020_59_CR.pdf doi:10.5220/0009569101120118 info:eu-repo/semantics/OpenAccess 6th International Conference on Geographic Information Sytems Theory, Applications and Management https://amu.hal.science/hal-02554659 6th International Conference on Geographic Information Sytems Theory, Applications and Management, Polytechnic Institute of Setúbal/IPS; Knowledge Systems Institute; ATHENA Research & Innovation Information Technologies, May 2020, Online Streaming, Portugal. pp.112-118, ⟨10.5220/0009569101120118⟩ http://www.insticc.org/node/TechnicalProgram/GISTAM/2020/presentationDetails/95691 Geographic Ontology Image Analysis Knowledge Database Image Processing Alas Landscape Remote Sensing Arctic Russia Artificial intelligence methods [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] [SHS.STAT]Humanities and Social Sciences/Methods and statistics [SDE.ES]Environmental Sciences/Environment and Society [SHS.GEO]Humanities and Social Sciences/Geography [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation info:eu-repo/semantics/conferenceObject Conference papers 2020 ftunivaixmarseil https://doi.org/10.5220/0009569101120118 2024-03-21T17:09:28Z International audience Approaches of geographic ontologies can help to overcome the problems of ambiguity and uncertainty of remote sensing data analysis for modeling the landscapes as a multidimensional geographic object of research. Image analysis based on the geographic ontologies allows to recognize the elementary characteristics of the alas landscapes and their complexity. The methodology developed includes three levels of geographic object recognition: (1) the landscape land cover classification using Support Vector Machine (SVM) and Spectral Angle Mapper (SAM) classifiers; (2) the object-based image analysis (OBIA) used for the identification of alas landscape objects according to their morphologic structures using the Decision Tree Learning algorithm; (3) alas landscape's identification and categorization integrating vegetation objects, territorial organizations, and human cognitive knowledge reflected on the geo-linguistic object-oriented database made in Central Ya-kutia. The result gives an ontology-based alas landscape model as a system of geographic objects (forests, grasslands, arable lands, termokarst lakes, rural areas, farms, repartition of built-up areas, etc.) developed under conditions of permafrost and with a high sensitivity to the climate change and its local variabilities. The proposed approach provides a multidimensional reliable recognition of alas landscape objects by remote sensing images analysis integrating human semantic knowledge model of Central Yakutia in the subarctic Siberia. This model requires to conduct a multitemporal dynamic analysis for the sustainability assessment and land management. Conference Object Arctic Climate change permafrost Subarctic Yakutia Siberia termokarst Aix-Marseille Université: HAL Arctic Proceedings of the 6th International Conference on Geographical Information Systems Theory, Applications and Management 112 118