Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia)
International audience Approaches of geographic ontologies can help to overcome the problems of ambiguity and uncertainty of remote sensing data analysis for modeling the landscapes as a multidimensional geographic object of research. Image analysis based on the geographic ontologies allows to recog...
Published in: | Proceedings of the 6th International Conference on Geographical Information Systems Theory, Applications and Management |
---|---|
Main Authors: | , , , |
Other Authors: | , , , , , , , , , , |
Format: | Conference Object |
Language: | English |
Published: |
CCSD
2020
|
Subjects: | |
Online Access: | https://amu.hal.science/hal-02554659 https://amu.hal.science/hal-02554659v1/document https://amu.hal.science/hal-02554659v1/file/GISTAM_2020_59_CR.pdf https://doi.org/10.5220/0009569101120118 |
_version_ | 1829949024028852224 |
---|---|
author | Gadal, Sébastien Zakharov, Moisei Kamičaitytė, Jūratė Danilov, Yuri |
author2 | North-Eastern Federal University Études des Structures, des Processus d’Adaptation et des Changements de l’Espace (ESPACE) Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA) Aix Marseille Université (AMU) Kaunas University of Technology (KTU) Polar Urban Centers PUR CNRS PEPS INEE RICOCHET (A la Recherche de l’Intégration des Connaissances dans l’Observation des CHangements Environnementaux : mise en œuvre d’une recherche-aTelier en Sibérie Orientale (Khamagatta)) IEEE Geoscience and Remote Sensing Society ACM SIGSPATIAL ANR-14-CE22-0015,ECN FRANCE,Vers des moteurs propres et efficaces: contribution de la FRANCE au réseau ECN(2014) ANR-15-CE22-0006,PUR,Pôles URbains(2015) |
author_facet | Gadal, Sébastien Zakharov, Moisei Kamičaitytė, Jūratė Danilov, Yuri |
author_sort | Gadal, Sébastien |
collection | Aix-Marseille Université: HAL |
container_start_page | 112 |
container_title | Proceedings of the 6th International Conference on Geographical Information Systems Theory, Applications and Management |
description | International audience Approaches of geographic ontologies can help to overcome the problems of ambiguity and uncertainty of remote sensing data analysis for modeling the landscapes as a multidimensional geographic object of research. Image analysis based on the geographic ontologies allows to recognize the elementary characteristics of the alas landscapes and their complexity. The methodology developed includes three levels of geographic object recognition: (1) the landscape land cover classification using Support Vector Machine (SVM) and Spectral Angle Mapper (SAM) classifiers; (2) the object-based image analysis (OBIA) used for the identification of alas landscape objects according to their morphologic structures using the Decision Tree Learning algorithm; (3) alas landscape's identification and categorization integrating vegetation objects, territorial organizations, and human cognitive knowledge reflected on the geo-linguistic object-oriented database made in Central Ya-kutia. The result gives an ontology-based alas landscape model as a system of geographic objects (forests, grasslands, arable lands, termokarst lakes, rural areas, farms, repartition of built-up areas, etc.) developed under conditions of permafrost and with a high sensitivity to the climate change and its local variabilities. The proposed approach provides a multidimensional reliable recognition of alas landscape objects by remote sensing images analysis integrating human semantic knowledge model of Central Yakutia in the subarctic Siberia. This model requires to conduct a multitemporal dynamic analysis for the sustainability assessment and land management. |
format | Conference Object |
genre | Arctic Climate change permafrost Subarctic Yakutia Siberia termokarst |
genre_facet | Arctic Climate change permafrost Subarctic Yakutia Siberia termokarst |
geographic | Arctic |
geographic_facet | Arctic |
id | ftunivaixmarseil:oai:HAL:hal-02554659v1 |
institution | Open Polar |
language | English |
op_collection_id | ftunivaixmarseil |
op_container_end_page | 118 |
op_doi | https://doi.org/10.5220/0009569101120118 |
op_relation | info:eu-repo/semantics/altIdentifier/doi/10.5220/0009569101120118 doi:10.5220/0009569101120118 |
op_rights | http://creativecommons.org/licenses/by-nc/ info:eu-repo/semantics/OpenAccess |
op_source | 6th International Conference on Geographic Information Sytems Theory, Applications and Management https://amu.hal.science/hal-02554659 6th International Conference on Geographic Information Sytems Theory, Applications and Management, 59, SCITEPRESS, pp.112-118, 2020, ⟨10.5220/0009569101120118⟩ |
publishDate | 2020 |
publisher | CCSD |
record_format | openpolar |
spelling | ftunivaixmarseil:oai:HAL:hal-02554659v1 2025-04-20T14:33:20+00:00 Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia) Gadal, Sébastien Zakharov, Moisei Kamičaitytė, Jūratė Danilov, Yuri North-Eastern Federal University Études des Structures, des Processus d’Adaptation et des Changements de l’Espace (ESPACE) Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA) Aix Marseille Université (AMU) Kaunas University of Technology (KTU) Polar Urban Centers PUR CNRS PEPS INEE RICOCHET (A la Recherche de l’Intégration des Connaissances dans l’Observation des CHangements Environnementaux : mise en œuvre d’une recherche-aTelier en Sibérie Orientale (Khamagatta)) IEEE Geoscience and Remote Sensing Society ACM SIGSPATIAL ANR-14-CE22-0015,ECN FRANCE,Vers des moteurs propres et efficaces: contribution de la FRANCE au réseau ECN(2014) ANR-15-CE22-0006,PUR,Pôles URbains(2015) 2020-04-25 https://amu.hal.science/hal-02554659 https://amu.hal.science/hal-02554659v1/document https://amu.hal.science/hal-02554659v1/file/GISTAM_2020_59_CR.pdf https://doi.org/10.5220/0009569101120118 en eng CCSD SCITEPRESS info:eu-repo/semantics/altIdentifier/doi/10.5220/0009569101120118 doi:10.5220/0009569101120118 http://creativecommons.org/licenses/by-nc/ info:eu-repo/semantics/OpenAccess 6th International Conference on Geographic Information Sytems Theory, Applications and Management https://amu.hal.science/hal-02554659 6th International Conference on Geographic Information Sytems Theory, Applications and Management, 59, SCITEPRESS, pp.112-118, 2020, ⟨10.5220/0009569101120118⟩ Geographic Ontology Image Analysis Knowledge Database Image Processing Alas Landscape Remote Sensing Arctic Russia Artificial intelligence methods [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation [SDE.ES]Environmental Sciences/Environment and Society [SHS.GEO]Humanities and Social Sciences/Geography [SHS.STAT]Humanities and Social Sciences/Methods and statistics info:eu-repo/semantics/other Proceedings 2020 ftunivaixmarseil https://doi.org/10.5220/0009569101120118 2025-03-31T07:17:12Z International audience Approaches of geographic ontologies can help to overcome the problems of ambiguity and uncertainty of remote sensing data analysis for modeling the landscapes as a multidimensional geographic object of research. Image analysis based on the geographic ontologies allows to recognize the elementary characteristics of the alas landscapes and their complexity. The methodology developed includes three levels of geographic object recognition: (1) the landscape land cover classification using Support Vector Machine (SVM) and Spectral Angle Mapper (SAM) classifiers; (2) the object-based image analysis (OBIA) used for the identification of alas landscape objects according to their morphologic structures using the Decision Tree Learning algorithm; (3) alas landscape's identification and categorization integrating vegetation objects, territorial organizations, and human cognitive knowledge reflected on the geo-linguistic object-oriented database made in Central Ya-kutia. The result gives an ontology-based alas landscape model as a system of geographic objects (forests, grasslands, arable lands, termokarst lakes, rural areas, farms, repartition of built-up areas, etc.) developed under conditions of permafrost and with a high sensitivity to the climate change and its local variabilities. The proposed approach provides a multidimensional reliable recognition of alas landscape objects by remote sensing images analysis integrating human semantic knowledge model of Central Yakutia in the subarctic Siberia. This model requires to conduct a multitemporal dynamic analysis for the sustainability assessment and land management. Conference Object Arctic Climate change permafrost Subarctic Yakutia Siberia termokarst Aix-Marseille Université: HAL Arctic Proceedings of the 6th International Conference on Geographical Information Systems Theory, Applications and Management 112 118 |
spellingShingle | Geographic Ontology Image Analysis Knowledge Database Image Processing Alas Landscape Remote Sensing Arctic Russia Artificial intelligence methods [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation [SDE.ES]Environmental Sciences/Environment and Society [SHS.GEO]Humanities and Social Sciences/Geography [SHS.STAT]Humanities and Social Sciences/Methods and statistics Gadal, Sébastien Zakharov, Moisei Kamičaitytė, Jūratė Danilov, Yuri Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia) |
title | Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia) |
title_full | Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia) |
title_fullStr | Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia) |
title_full_unstemmed | Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia) |
title_short | Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia) |
title_sort | alas landscape modeling by remote sensing image analysis and geographic ontology. study case of central yakutia (russia) |
topic | Geographic Ontology Image Analysis Knowledge Database Image Processing Alas Landscape Remote Sensing Arctic Russia Artificial intelligence methods [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation [SDE.ES]Environmental Sciences/Environment and Society [SHS.GEO]Humanities and Social Sciences/Geography [SHS.STAT]Humanities and Social Sciences/Methods and statistics |
topic_facet | Geographic Ontology Image Analysis Knowledge Database Image Processing Alas Landscape Remote Sensing Arctic Russia Artificial intelligence methods [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation [SDE.ES]Environmental Sciences/Environment and Society [SHS.GEO]Humanities and Social Sciences/Geography [SHS.STAT]Humanities and Social Sciences/Methods and statistics |
url | https://amu.hal.science/hal-02554659 https://amu.hal.science/hal-02554659v1/document https://amu.hal.science/hal-02554659v1/file/GISTAM_2020_59_CR.pdf https://doi.org/10.5220/0009569101120118 |