Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia)

International audience Approaches of geographic ontologies can help to overcome the problems of ambiguity and uncertainty of remote sensing data analysis for modeling the landscapes as a multidimensional geographic object of research. Image analysis based on the geographic ontologies allows to recog...

Full description

Bibliographic Details
Published in:Proceedings of the 6th International Conference on Geographical Information Systems Theory, Applications and Management
Main Authors: Gadal, Sébastien, Zakharov, Moisei, Kamičaitytė, Jūratė, Danilov, Yuri
Other Authors: North-Eastern Federal University, Études des Structures, des Processus d’Adaptation et des Changements de l’Espace (ESPACE), Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA), Aix Marseille Université (AMU), Kaunas University of Technology (KTU), Polar Urban Centers PUR, CNRS PEPS INEE RICOCHET (A la Recherche de l’Intégration des Connaissances dans l’Observation des CHangements Environnementaux : mise en œuvre d’une recherche-aTelier en Sibérie Orientale (Khamagatta)), IEEE Geoscience and Remote Sensing Society, ACM SIGSPATIAL, ANR-14-CE22-0015,ECN FRANCE,Vers des moteurs propres et efficaces: contribution de la FRANCE au réseau ECN(2014), ANR-15-CE22-0006,PUR,Pôles URbains(2015)
Format: Conference Object
Language:English
Published: CCSD 2020
Subjects:
Online Access:https://amu.hal.science/hal-02554659
https://amu.hal.science/hal-02554659v1/document
https://amu.hal.science/hal-02554659v1/file/GISTAM_2020_59_CR.pdf
https://doi.org/10.5220/0009569101120118
_version_ 1829949024028852224
author Gadal, Sébastien
Zakharov, Moisei
Kamičaitytė, Jūratė
Danilov, Yuri
author2 North-Eastern Federal University
Études des Structures, des Processus d’Adaptation et des Changements de l’Espace (ESPACE)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
Aix Marseille Université (AMU)
Kaunas University of Technology (KTU)
Polar Urban Centers PUR
CNRS PEPS INEE RICOCHET (A la Recherche de l’Intégration des Connaissances dans l’Observation des CHangements Environnementaux : mise en œuvre d’une recherche-aTelier en Sibérie Orientale (Khamagatta))
IEEE Geoscience and Remote Sensing Society
ACM SIGSPATIAL
ANR-14-CE22-0015,ECN FRANCE,Vers des moteurs propres et efficaces: contribution de la FRANCE au réseau ECN(2014)
ANR-15-CE22-0006,PUR,Pôles URbains(2015)
author_facet Gadal, Sébastien
Zakharov, Moisei
Kamičaitytė, Jūratė
Danilov, Yuri
author_sort Gadal, Sébastien
collection Aix-Marseille Université: HAL
container_start_page 112
container_title Proceedings of the 6th International Conference on Geographical Information Systems Theory, Applications and Management
description International audience Approaches of geographic ontologies can help to overcome the problems of ambiguity and uncertainty of remote sensing data analysis for modeling the landscapes as a multidimensional geographic object of research. Image analysis based on the geographic ontologies allows to recognize the elementary characteristics of the alas landscapes and their complexity. The methodology developed includes three levels of geographic object recognition: (1) the landscape land cover classification using Support Vector Machine (SVM) and Spectral Angle Mapper (SAM) classifiers; (2) the object-based image analysis (OBIA) used for the identification of alas landscape objects according to their morphologic structures using the Decision Tree Learning algorithm; (3) alas landscape's identification and categorization integrating vegetation objects, territorial organizations, and human cognitive knowledge reflected on the geo-linguistic object-oriented database made in Central Ya-kutia. The result gives an ontology-based alas landscape model as a system of geographic objects (forests, grasslands, arable lands, termokarst lakes, rural areas, farms, repartition of built-up areas, etc.) developed under conditions of permafrost and with a high sensitivity to the climate change and its local variabilities. The proposed approach provides a multidimensional reliable recognition of alas landscape objects by remote sensing images analysis integrating human semantic knowledge model of Central Yakutia in the subarctic Siberia. This model requires to conduct a multitemporal dynamic analysis for the sustainability assessment and land management.
format Conference Object
genre Arctic
Climate change
permafrost
Subarctic
Yakutia
Siberia
termokarst
genre_facet Arctic
Climate change
permafrost
Subarctic
Yakutia
Siberia
termokarst
geographic Arctic
geographic_facet Arctic
id ftunivaixmarseil:oai:HAL:hal-02554659v1
institution Open Polar
language English
op_collection_id ftunivaixmarseil
op_container_end_page 118
op_doi https://doi.org/10.5220/0009569101120118
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5220/0009569101120118
doi:10.5220/0009569101120118
op_rights http://creativecommons.org/licenses/by-nc/
info:eu-repo/semantics/OpenAccess
op_source 6th International Conference on Geographic Information Sytems Theory, Applications and Management
https://amu.hal.science/hal-02554659
6th International Conference on Geographic Information Sytems Theory, Applications and Management, 59, SCITEPRESS, pp.112-118, 2020, ⟨10.5220/0009569101120118⟩
publishDate 2020
publisher CCSD
record_format openpolar
spelling ftunivaixmarseil:oai:HAL:hal-02554659v1 2025-04-20T14:33:20+00:00 Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia) Gadal, Sébastien Zakharov, Moisei Kamičaitytė, Jūratė Danilov, Yuri North-Eastern Federal University Études des Structures, des Processus d’Adaptation et des Changements de l’Espace (ESPACE) Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA) Aix Marseille Université (AMU) Kaunas University of Technology (KTU) Polar Urban Centers PUR CNRS PEPS INEE RICOCHET (A la Recherche de l’Intégration des Connaissances dans l’Observation des CHangements Environnementaux : mise en œuvre d’une recherche-aTelier en Sibérie Orientale (Khamagatta)) IEEE Geoscience and Remote Sensing Society ACM SIGSPATIAL ANR-14-CE22-0015,ECN FRANCE,Vers des moteurs propres et efficaces: contribution de la FRANCE au réseau ECN(2014) ANR-15-CE22-0006,PUR,Pôles URbains(2015) 2020-04-25 https://amu.hal.science/hal-02554659 https://amu.hal.science/hal-02554659v1/document https://amu.hal.science/hal-02554659v1/file/GISTAM_2020_59_CR.pdf https://doi.org/10.5220/0009569101120118 en eng CCSD SCITEPRESS info:eu-repo/semantics/altIdentifier/doi/10.5220/0009569101120118 doi:10.5220/0009569101120118 http://creativecommons.org/licenses/by-nc/ info:eu-repo/semantics/OpenAccess 6th International Conference on Geographic Information Sytems Theory, Applications and Management https://amu.hal.science/hal-02554659 6th International Conference on Geographic Information Sytems Theory, Applications and Management, 59, SCITEPRESS, pp.112-118, 2020, ⟨10.5220/0009569101120118⟩ Geographic Ontology Image Analysis Knowledge Database Image Processing Alas Landscape Remote Sensing Arctic Russia Artificial intelligence methods [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation [SDE.ES]Environmental Sciences/Environment and Society [SHS.GEO]Humanities and Social Sciences/Geography [SHS.STAT]Humanities and Social Sciences/Methods and statistics info:eu-repo/semantics/other Proceedings 2020 ftunivaixmarseil https://doi.org/10.5220/0009569101120118 2025-03-31T07:17:12Z International audience Approaches of geographic ontologies can help to overcome the problems of ambiguity and uncertainty of remote sensing data analysis for modeling the landscapes as a multidimensional geographic object of research. Image analysis based on the geographic ontologies allows to recognize the elementary characteristics of the alas landscapes and their complexity. The methodology developed includes three levels of geographic object recognition: (1) the landscape land cover classification using Support Vector Machine (SVM) and Spectral Angle Mapper (SAM) classifiers; (2) the object-based image analysis (OBIA) used for the identification of alas landscape objects according to their morphologic structures using the Decision Tree Learning algorithm; (3) alas landscape's identification and categorization integrating vegetation objects, territorial organizations, and human cognitive knowledge reflected on the geo-linguistic object-oriented database made in Central Ya-kutia. The result gives an ontology-based alas landscape model as a system of geographic objects (forests, grasslands, arable lands, termokarst lakes, rural areas, farms, repartition of built-up areas, etc.) developed under conditions of permafrost and with a high sensitivity to the climate change and its local variabilities. The proposed approach provides a multidimensional reliable recognition of alas landscape objects by remote sensing images analysis integrating human semantic knowledge model of Central Yakutia in the subarctic Siberia. This model requires to conduct a multitemporal dynamic analysis for the sustainability assessment and land management. Conference Object Arctic Climate change permafrost Subarctic Yakutia Siberia termokarst Aix-Marseille Université: HAL Arctic Proceedings of the 6th International Conference on Geographical Information Systems Theory, Applications and Management 112 118
spellingShingle Geographic Ontology
Image Analysis
Knowledge Database
Image Processing
Alas Landscape
Remote Sensing
Arctic
Russia
Artificial intelligence methods
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
[SDE.ES]Environmental Sciences/Environment and Society
[SHS.GEO]Humanities and Social Sciences/Geography
[SHS.STAT]Humanities and Social Sciences/Methods and statistics
Gadal, Sébastien
Zakharov, Moisei
Kamičaitytė, Jūratė
Danilov, Yuri
Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia)
title Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia)
title_full Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia)
title_fullStr Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia)
title_full_unstemmed Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia)
title_short Alas Landscape Modeling by Remote Sensing Image Analysis and Geographic Ontology. Study case of Central Yakutia (Russia)
title_sort alas landscape modeling by remote sensing image analysis and geographic ontology. study case of central yakutia (russia)
topic Geographic Ontology
Image Analysis
Knowledge Database
Image Processing
Alas Landscape
Remote Sensing
Arctic
Russia
Artificial intelligence methods
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
[SDE.ES]Environmental Sciences/Environment and Society
[SHS.GEO]Humanities and Social Sciences/Geography
[SHS.STAT]Humanities and Social Sciences/Methods and statistics
topic_facet Geographic Ontology
Image Analysis
Knowledge Database
Image Processing
Alas Landscape
Remote Sensing
Arctic
Russia
Artificial intelligence methods
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
[SDE.ES]Environmental Sciences/Environment and Society
[SHS.GEO]Humanities and Social Sciences/Geography
[SHS.STAT]Humanities and Social Sciences/Methods and statistics
url https://amu.hal.science/hal-02554659
https://amu.hal.science/hal-02554659v1/document
https://amu.hal.science/hal-02554659v1/file/GISTAM_2020_59_CR.pdf
https://doi.org/10.5220/0009569101120118