Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers

International audience The influence of spanwise geometrical undulations of the leading edge of an infinite wing is investigated numerically at low Reynolds number, in the context of passive separation control and focusing on the physical mechanisms involved. Inspired by the tubercles of the humpbac...

Full description

Bibliographic Details
Published in:Comptes Rendus Mécanique
Main Authors: Favier, Julien, Pinelli, Alfredo, Piomelli, Ugo
Other Authors: Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Unidad de Modelización y Simulación Numérica (CIEMAT), Unidad de Modelización y Simulación Numérica, Dept. of Mechanical and Materials Engineering, Queen's University Kingston, Canada
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2012
Subjects:
Online Access:https://hal.science/hal-00941404
https://hal.science/hal-00941404/document
https://hal.science/hal-00941404/file/CRAS-whale.pdf
https://doi.org/10.1016/j.crme.2011.11.004
id ftunivaixmarseil:oai:HAL:hal-00941404v1
record_format openpolar
spelling ftunivaixmarseil:oai:HAL:hal-00941404v1 2023-10-01T03:56:32+02:00 Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers Favier, Julien Pinelli, Alfredo Piomelli, Ugo Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2) Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS) Unidad de Modelización y Simulación Numérica (CIEMAT) Unidad de Modelización y Simulación Numérica Dept. of Mechanical and Materials Engineering Queen's University Kingston, Canada 2012 https://hal.science/hal-00941404 https://hal.science/hal-00941404/document https://hal.science/hal-00941404/file/CRAS-whale.pdf https://doi.org/10.1016/j.crme.2011.11.004 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.crme.2011.11.004 hal-00941404 https://hal.science/hal-00941404 https://hal.science/hal-00941404/document https://hal.science/hal-00941404/file/CRAS-whale.pdf doi:10.1016/j.crme.2011.11.004 info:eu-repo/semantics/OpenAccess Comptes Rendus Mécanique https://hal.science/hal-00941404 Comptes Rendus Mécanique, 2012, 340 (1-2), pp.107-114. ⟨10.1016/j.crme.2011.11.004⟩ Flow control Biomimetics Immersed boundary Humpback whale flippers [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] [SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] info:eu-repo/semantics/article Journal articles 2012 ftunivaixmarseil https://doi.org/10.1016/j.crme.2011.11.004 2023-09-05T22:34:06Z International audience The influence of spanwise geometrical undulations of the leading edge of an infinite wing is investigated numerically at low Reynolds number, in the context of passive separation control and focusing on the physical mechanisms involved. Inspired by the tubercles of the humpback whale flippers, the wavy leading edge is modeled using a spanwise sinusoidal function whose amplitude and wavelength constitute the parameters of control. A direct numerical simulation is performed on a NACA0020 wing profile in a deep stall configuration (α=20°α=20°), with and without the presence of the leading edge waviness. The complex solid boundaries obtained by varying the sinusoidal shape of the leading edge are modeled using an immersed boundary method (IBM) recently developed by the authors [Pinelli et al., J. Comput. Phys. 229 (2010) 9073-9091]. A particular set of wave parameters is found to change drastically the topology of the separated zone, which becomes dominated by streamwise vortices generated from the sides of the leading edge bumps. A physical analysis is carried out to explain the mechanism leading to the generation of these coherent vortical structures. The role they play in the control of boundary layer separation is also investigated, in the context of the modifications of the hydrodynamic performances which have been put forward in the literature in the last decade. Article in Journal/Newspaper Humpback Whale Aix-Marseille Université: HAL Comptes Rendus Mécanique 340 1-2 107 114
institution Open Polar
collection Aix-Marseille Université: HAL
op_collection_id ftunivaixmarseil
language English
topic Flow control
Biomimetics
Immersed boundary
Humpback whale flippers
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]
spellingShingle Flow control
Biomimetics
Immersed boundary
Humpback whale flippers
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]
Favier, Julien
Pinelli, Alfredo
Piomelli, Ugo
Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers
topic_facet Flow control
Biomimetics
Immersed boundary
Humpback whale flippers
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]
description International audience The influence of spanwise geometrical undulations of the leading edge of an infinite wing is investigated numerically at low Reynolds number, in the context of passive separation control and focusing on the physical mechanisms involved. Inspired by the tubercles of the humpback whale flippers, the wavy leading edge is modeled using a spanwise sinusoidal function whose amplitude and wavelength constitute the parameters of control. A direct numerical simulation is performed on a NACA0020 wing profile in a deep stall configuration (α=20°α=20°), with and without the presence of the leading edge waviness. The complex solid boundaries obtained by varying the sinusoidal shape of the leading edge are modeled using an immersed boundary method (IBM) recently developed by the authors [Pinelli et al., J. Comput. Phys. 229 (2010) 9073-9091]. A particular set of wave parameters is found to change drastically the topology of the separated zone, which becomes dominated by streamwise vortices generated from the sides of the leading edge bumps. A physical analysis is carried out to explain the mechanism leading to the generation of these coherent vortical structures. The role they play in the control of boundary layer separation is also investigated, in the context of the modifications of the hydrodynamic performances which have been put forward in the literature in the last decade.
author2 Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2)
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Unidad de Modelización y Simulación Numérica (CIEMAT)
Unidad de Modelización y Simulación Numérica
Dept. of Mechanical and Materials Engineering
Queen's University Kingston, Canada
format Article in Journal/Newspaper
author Favier, Julien
Pinelli, Alfredo
Piomelli, Ugo
author_facet Favier, Julien
Pinelli, Alfredo
Piomelli, Ugo
author_sort Favier, Julien
title Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers
title_short Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers
title_full Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers
title_fullStr Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers
title_full_unstemmed Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers
title_sort control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers
publisher HAL CCSD
publishDate 2012
url https://hal.science/hal-00941404
https://hal.science/hal-00941404/document
https://hal.science/hal-00941404/file/CRAS-whale.pdf
https://doi.org/10.1016/j.crme.2011.11.004
genre Humpback Whale
genre_facet Humpback Whale
op_source Comptes Rendus Mécanique
https://hal.science/hal-00941404
Comptes Rendus Mécanique, 2012, 340 (1-2), pp.107-114. ⟨10.1016/j.crme.2011.11.004⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.crme.2011.11.004
hal-00941404
https://hal.science/hal-00941404
https://hal.science/hal-00941404/document
https://hal.science/hal-00941404/file/CRAS-whale.pdf
doi:10.1016/j.crme.2011.11.004
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1016/j.crme.2011.11.004
container_title Comptes Rendus Mécanique
container_volume 340
container_issue 1-2
container_start_page 107
op_container_end_page 114
_version_ 1778526467880124416