Expanding Antarctic biogeography: microbial ecology of Antarctic island soils
First published: 10 July 2023 The majority of islands surrounding the Antarctic continent are poorly characterized in terms of microbial macroecology due to their remote locations, geographical isolation and access difficulties. The 2016/2017 Antarctic Circumnavigation Expedition (ACE) provided unpr...
Published in: | Ecography |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Wiley
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/2440/139185 https://doi.org/10.1111/ecog.06568 |
id |
ftunivadelaidedl:oai:digital.library.adelaide.edu.au:2440/139185 |
---|---|
record_format |
openpolar |
spelling |
ftunivadelaidedl:oai:digital.library.adelaide.edu.au:2440/139185 2023-12-17T10:21:43+01:00 Expanding Antarctic biogeography: microbial ecology of Antarctic island soils Lebre, P.H. Bosch, J. Coclet, C. Hallas, R. Hogg, I.D. Johnson, J. Moon, K.L. Ortiz, M. Rotimi, A. Stevens, M.I. Varliero, G. Convey, P. Vikram, S. Chown, S.L. Cowan, D.A. 2023 application/pdf https://hdl.handle.net/2440/139185 https://doi.org/10.1111/ecog.06568 en eng Wiley Ecography: pattern and diversity in ecology, 2023; 2023(9):e06568-1-e06568-20 0906-7590 1600-0587 https://hdl.handle.net/2440/139185 doi:10.1111/ecog.06568 Stevens, M.I. [0000-0003-1505-1639] © 2023 The Authors. Ecography published by John Wiley & Sons Ltd on behalf of Nordic Society Oikos. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. http://dx.doi.org/10.1111/ecog.06568 Antarctic conservation biogeographic regions (ACBRs) Antarctic ecology functional metagenomics microbial ecology sub-Antarctic islands Journal article 2023 ftunivadelaidedl https://doi.org/10.1111/ecog.06568 2023-11-20T23:23:20Z First published: 10 July 2023 The majority of islands surrounding the Antarctic continent are poorly characterized in terms of microbial macroecology due to their remote locations, geographical isolation and access difficulties. The 2016/2017 Antarctic Circumnavigation Expedition (ACE) provided unprecedented access to a number of these islands. In the present study we use metagenomic methods to investigate the microbial ecology of soil samples recovered from 11 circum-Antarctic islands as part of ACE, and to investigate the functional potential of their soil microbial communities. Comparisons of the prokaryote and lower eukaryote phylogenetic compositions of the soil communities indicated that the various islands harbored spatially distinct microbiomes with limited overlap. In particular, we identified a high prevalence of lichen-associated fungal taxa in the soils, suggesting that terrestrial lichens may be one of the key drivers of soil microbial ecology on these islands. Differential abundance and redundancy analyses suggested that these soil microbial communities are also strongly shaped by multiple abiotic factors, including soil pH and average annual temperatures. Most importantly, we demonstrate that the islands sampled in this study can be clustered into three distinct large-scale biogeographical regions in a conservation context, the sub-, Maritime and Continental Antarctic, which are distinct in both environmental conditions and microbial ecology, but are consistent with the widely-used regionalization applied to multicellular Antarctic terrestrial organisms. Functional profiling of the island soil metagenomes from these three broad biogeographical regions also suggested a degree of functional differentiation, reflecting their distinct microbial ecologies. Taken together, these results represent the most extensive characterization of the microbial ecology of Antarctic island soils to date. Pedro H. Lebre, Jason Bosch, Clément Coclet, Rebecca Hallas, Ian D. Hogg, Jenny Johnson, Katherine L. Moon, ... Article in Journal/Newspaper Antarc* Antarctic The University of Adelaide: Digital Library Antarctic Jenny ENVELOPE(-68.417,-68.417,-67.733,-67.733) The Antarctic Ecography 2023 9 |
institution |
Open Polar |
collection |
The University of Adelaide: Digital Library |
op_collection_id |
ftunivadelaidedl |
language |
English |
topic |
Antarctic conservation biogeographic regions (ACBRs) Antarctic ecology functional metagenomics microbial ecology sub-Antarctic islands |
spellingShingle |
Antarctic conservation biogeographic regions (ACBRs) Antarctic ecology functional metagenomics microbial ecology sub-Antarctic islands Lebre, P.H. Bosch, J. Coclet, C. Hallas, R. Hogg, I.D. Johnson, J. Moon, K.L. Ortiz, M. Rotimi, A. Stevens, M.I. Varliero, G. Convey, P. Vikram, S. Chown, S.L. Cowan, D.A. Expanding Antarctic biogeography: microbial ecology of Antarctic island soils |
topic_facet |
Antarctic conservation biogeographic regions (ACBRs) Antarctic ecology functional metagenomics microbial ecology sub-Antarctic islands |
description |
First published: 10 July 2023 The majority of islands surrounding the Antarctic continent are poorly characterized in terms of microbial macroecology due to their remote locations, geographical isolation and access difficulties. The 2016/2017 Antarctic Circumnavigation Expedition (ACE) provided unprecedented access to a number of these islands. In the present study we use metagenomic methods to investigate the microbial ecology of soil samples recovered from 11 circum-Antarctic islands as part of ACE, and to investigate the functional potential of their soil microbial communities. Comparisons of the prokaryote and lower eukaryote phylogenetic compositions of the soil communities indicated that the various islands harbored spatially distinct microbiomes with limited overlap. In particular, we identified a high prevalence of lichen-associated fungal taxa in the soils, suggesting that terrestrial lichens may be one of the key drivers of soil microbial ecology on these islands. Differential abundance and redundancy analyses suggested that these soil microbial communities are also strongly shaped by multiple abiotic factors, including soil pH and average annual temperatures. Most importantly, we demonstrate that the islands sampled in this study can be clustered into three distinct large-scale biogeographical regions in a conservation context, the sub-, Maritime and Continental Antarctic, which are distinct in both environmental conditions and microbial ecology, but are consistent with the widely-used regionalization applied to multicellular Antarctic terrestrial organisms. Functional profiling of the island soil metagenomes from these three broad biogeographical regions also suggested a degree of functional differentiation, reflecting their distinct microbial ecologies. Taken together, these results represent the most extensive characterization of the microbial ecology of Antarctic island soils to date. Pedro H. Lebre, Jason Bosch, Clément Coclet, Rebecca Hallas, Ian D. Hogg, Jenny Johnson, Katherine L. Moon, ... |
format |
Article in Journal/Newspaper |
author |
Lebre, P.H. Bosch, J. Coclet, C. Hallas, R. Hogg, I.D. Johnson, J. Moon, K.L. Ortiz, M. Rotimi, A. Stevens, M.I. Varliero, G. Convey, P. Vikram, S. Chown, S.L. Cowan, D.A. |
author_facet |
Lebre, P.H. Bosch, J. Coclet, C. Hallas, R. Hogg, I.D. Johnson, J. Moon, K.L. Ortiz, M. Rotimi, A. Stevens, M.I. Varliero, G. Convey, P. Vikram, S. Chown, S.L. Cowan, D.A. |
author_sort |
Lebre, P.H. |
title |
Expanding Antarctic biogeography: microbial ecology of Antarctic island soils |
title_short |
Expanding Antarctic biogeography: microbial ecology of Antarctic island soils |
title_full |
Expanding Antarctic biogeography: microbial ecology of Antarctic island soils |
title_fullStr |
Expanding Antarctic biogeography: microbial ecology of Antarctic island soils |
title_full_unstemmed |
Expanding Antarctic biogeography: microbial ecology of Antarctic island soils |
title_sort |
expanding antarctic biogeography: microbial ecology of antarctic island soils |
publisher |
Wiley |
publishDate |
2023 |
url |
https://hdl.handle.net/2440/139185 https://doi.org/10.1111/ecog.06568 |
long_lat |
ENVELOPE(-68.417,-68.417,-67.733,-67.733) |
geographic |
Antarctic Jenny The Antarctic |
geographic_facet |
Antarctic Jenny The Antarctic |
genre |
Antarc* Antarctic |
genre_facet |
Antarc* Antarctic |
op_source |
http://dx.doi.org/10.1111/ecog.06568 |
op_relation |
Ecography: pattern and diversity in ecology, 2023; 2023(9):e06568-1-e06568-20 0906-7590 1600-0587 https://hdl.handle.net/2440/139185 doi:10.1111/ecog.06568 Stevens, M.I. [0000-0003-1505-1639] |
op_rights |
© 2023 The Authors. Ecography published by John Wiley & Sons Ltd on behalf of Nordic Society Oikos. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
op_doi |
https://doi.org/10.1111/ecog.06568 |
container_title |
Ecography |
container_volume |
2023 |
container_issue |
9 |
_version_ |
1785537884169699328 |