Cosmological constraints from sunyaev-zel'dovich-selected clusters with X-ray observations in the first 178 deg 2 of the south pole telescope survey
We use measurements from the South Pole Telescope (SPT) Sunyaev–Zel’dovich (SZ) cluster survey in combination with X-ray measurements to constrain cosmological parameters. We present a statistical method that fits for the scaling relations of the SZ and X-ray cluster observables with mass while join...
Published in: | The Astrophysical Journal |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Other Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | http://hdl.handle.net/11368/2963137 https://doi.org/10.1088/0004-637X/763/2/147 http://iopscience.iop.org/0004-637X/763/2/147/pdf/0004-637X_763_2_147.pdf |
Summary: | We use measurements from the South Pole Telescope (SPT) Sunyaev–Zel’dovich (SZ) cluster survey in combination with X-ray measurements to constrain cosmological parameters. We present a statistical method that fits for the scaling relations of the SZ and X-ray cluster observables with mass while jointly fitting for cosmology. The method is generalizable to multiple cluster observables, and self-consistently accounts for the effects of the cluster selection and uncertainties in cluster mass calibration on the derived cosmological constraints. We apply this method to a data set consisting of an SZ-selected catalog of 18 galaxy clusters at z > 0.3 from the first 178 deg2 of the 2500 deg2 SPT-SZ survey, with 14 clusters having X-ray observations from either Chandra or XMM-Newton. Assuming a spatially flat ΛCDM cosmological model, we find the SPT cluster sample constrains σ8(Ωm/0.25)0.30 = 0.785 ± 0.037. In combination with measurements of the cosmic microwave background (CMB) power spectrum from the SPT and the seven-year Wilkinson Microwave Anisotropy Probe data, the SPT cluster sample constrains σ8 = 0.795±0.016 and Ωm = 0.255±0.016, a factor of 1.5 improvement on each parameter over the CMB data alone. We consider several extensions beyond the ΛCDM model by including the following as free parameters: the dark energy equation of state (w), the sum of the neutrino masses (Σmν ), the effective number of relativistic species (Neff), and a primordial non-Gaussianity (fNL). We find that adding the SPT cluster data significantly improves the constraints on w and Σmν beyond those found when using measurements of the CMB, supernovae, baryon acoustic oscillations, and the Hubble constant. Considering each extension independently, we best constrain w = −0.973 ± 0.063 and the sum of neutrino masses Σmν < 0.28 eV at 95% confidence, a factor of 1.25 and 1.4 improvement, respectively, over the constraints without clusters. Assuming a ΛCDM model with a free Neff and Σmν , we measure Neff = 3.91 ± 0.42 and constrain Σmν < ... |
---|