Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover

Recent observational and numerical studies of the maritime snow cover in the Antarctic suggest that snow on top of sea ice plays a major role in shaping the seasonal growth and decay of the ice pack in the Southern Ocean. Here, we make a quantitative assessment of the importance of snow accumulation...

Full description

Bibliographic Details
Published in:Climate Dynamics
Main Authors: Fichefet, Thierry, Maqueda, MAM
Other Authors: UCL, UCL - SST/ELI/ELIC - Earth & Climate
Format: Article in Journal/Newspaper
Language:English
Published: Springer Verlag 1999
Subjects:
Online Access:http://hdl.handle.net/2078.1/44509
https://doi.org/10.1007/s003820050280
id ftunistlouisbrus:oai:dial.uclouvain.be:boreal:44509
record_format openpolar
spelling ftunistlouisbrus:oai:dial.uclouvain.be:boreal:44509 2024-05-12T07:56:16+00:00 Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover Fichefet, Thierry Maqueda, MAM UCL UCL - SST/ELI/ELIC - Earth & Climate 1999 http://hdl.handle.net/2078.1/44509 https://doi.org/10.1007/s003820050280 eng eng Springer Verlag boreal:44509 http://hdl.handle.net/2078.1/44509 doi:10.1007/s003820050280 urn:ISSN:0930-7575 urn:EISSN:1432-0894 info:eu-repo/semantics/restrictedAccess Climate Dynamics : observational, theoretical and computational research on the climate system, Vol. 15, no. 4, p. 251-268 (1999) info:eu-repo/semantics/article 1999 ftunistlouisbrus https://doi.org/10.1007/s003820050280 2024-04-18T18:13:57Z Recent observational and numerical studies of the maritime snow cover in the Antarctic suggest that snow on top of sea ice plays a major role in shaping the seasonal growth and decay of the ice pack in the Southern Ocean. Here, we make a quantitative assessment of the importance of snow accumulation in controlling the seasonal cycle of the ice cover with a coupled snow-sea-ice-upper-ocean model. The model takes into account snow and ice sublimation and snow deposition by condensation. A parametrisation of the formation of snow ice (ice resulting from the freezing of a mixture of snow and seawater produced by flooding of the ice flees) is also included. Experiments on the sensitivity of the snow-sea-ice system to variations in the sublimation/condensation rate, the precipitation rate, and the amount of snowfall transported by the wind into leads are discussed. Although we focus on the model response in the Southern Hemisphere, results for the Arctic are also discussed in some cases to highlight the relative importance of the processes under study in both hemispheres. It is found that the snow loss by sublimation can account for the removal of 0.45 m of snow per year in the Antarctic and that this loss significantly affects the total volume of snow ice. A precipitation decrease of 50% is conducive to large reductions in the Antarctic snow and snow-ice volumes, but it leads only to an 8% decrease in the annual mean ice volume. The Southern Ocean ice pack is more sensitive to increases in precipitation. For precipitation rates 1.5 times larger than the control ones, the annual mean snow, ice, and snow-ice volumes augment by 30, 20, and 180%, respectively. It is also found that the transfer to the ocean of as much as 50% of the precipitating snow as a result of wind transport has almost negligible effects on the total ice volume. All the experiments exhibit a marked geographical contrast in the ice-cover response, with a much larger sensitivity in the western sector of the Southern Ocean than in the eastern sector. ... Article in Journal/Newspaper Antarc* Antarctic Arctic ice pack Sea ice Southern Ocean DIAL@USL-B (Université Saint-Louis, Bruxelles) Antarctic Arctic Southern Ocean The Antarctic Climate Dynamics 15 4 251 268
institution Open Polar
collection DIAL@USL-B (Université Saint-Louis, Bruxelles)
op_collection_id ftunistlouisbrus
language English
description Recent observational and numerical studies of the maritime snow cover in the Antarctic suggest that snow on top of sea ice plays a major role in shaping the seasonal growth and decay of the ice pack in the Southern Ocean. Here, we make a quantitative assessment of the importance of snow accumulation in controlling the seasonal cycle of the ice cover with a coupled snow-sea-ice-upper-ocean model. The model takes into account snow and ice sublimation and snow deposition by condensation. A parametrisation of the formation of snow ice (ice resulting from the freezing of a mixture of snow and seawater produced by flooding of the ice flees) is also included. Experiments on the sensitivity of the snow-sea-ice system to variations in the sublimation/condensation rate, the precipitation rate, and the amount of snowfall transported by the wind into leads are discussed. Although we focus on the model response in the Southern Hemisphere, results for the Arctic are also discussed in some cases to highlight the relative importance of the processes under study in both hemispheres. It is found that the snow loss by sublimation can account for the removal of 0.45 m of snow per year in the Antarctic and that this loss significantly affects the total volume of snow ice. A precipitation decrease of 50% is conducive to large reductions in the Antarctic snow and snow-ice volumes, but it leads only to an 8% decrease in the annual mean ice volume. The Southern Ocean ice pack is more sensitive to increases in precipitation. For precipitation rates 1.5 times larger than the control ones, the annual mean snow, ice, and snow-ice volumes augment by 30, 20, and 180%, respectively. It is also found that the transfer to the ocean of as much as 50% of the precipitating snow as a result of wind transport has almost negligible effects on the total ice volume. All the experiments exhibit a marked geographical contrast in the ice-cover response, with a much larger sensitivity in the western sector of the Southern Ocean than in the eastern sector. ...
author2 UCL
UCL - SST/ELI/ELIC - Earth & Climate
format Article in Journal/Newspaper
author Fichefet, Thierry
Maqueda, MAM
spellingShingle Fichefet, Thierry
Maqueda, MAM
Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover
author_facet Fichefet, Thierry
Maqueda, MAM
author_sort Fichefet, Thierry
title Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover
title_short Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover
title_full Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover
title_fullStr Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover
title_full_unstemmed Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover
title_sort modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the antarctic sea-ice cover
publisher Springer Verlag
publishDate 1999
url http://hdl.handle.net/2078.1/44509
https://doi.org/10.1007/s003820050280
geographic Antarctic
Arctic
Southern Ocean
The Antarctic
geographic_facet Antarctic
Arctic
Southern Ocean
The Antarctic
genre Antarc*
Antarctic
Arctic
ice pack
Sea ice
Southern Ocean
genre_facet Antarc*
Antarctic
Arctic
ice pack
Sea ice
Southern Ocean
op_source Climate Dynamics : observational, theoretical and computational research on the climate system, Vol. 15, no. 4, p. 251-268 (1999)
op_relation boreal:44509
http://hdl.handle.net/2078.1/44509
doi:10.1007/s003820050280
urn:ISSN:0930-7575
urn:EISSN:1432-0894
op_rights info:eu-repo/semantics/restrictedAccess
op_doi https://doi.org/10.1007/s003820050280
container_title Climate Dynamics
container_volume 15
container_issue 4
container_start_page 251
op_container_end_page 268
_version_ 1798836251287093248