Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet

The future surface mass balance (SMB) will influence the ice dynamics and the contribution of the Antarctic ice sheet (AIS) to the sea level rise. Most of recent Antarctic SMB projections were based on the fifth phase of the Coupled Model Intercomparison Project (CMIP5). However, new CMIP6 results h...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Kittel, Christoph, Amory, Charles, Agosta, Cécile, Jourdain, Nicolas C., Hofer, Stefan, Delhasse, Alison, Doutreloup, Sébastien, Huot, Pierre-Vincent, Lang, Charlotte, Fichefet, Thierry, Fettweis, Xavier
Other Authors: UCL - SST/ELI/ELIC - Earth & Climate
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus GmbH 2021
Subjects:
Online Access:http://hdl.handle.net/2078.1/245890
https://doi.org/10.5194/tc-15-1215-2021
id ftunistlouisbrus:oai:dial.uclouvain.be:boreal:245890
record_format openpolar
spelling ftunistlouisbrus:oai:dial.uclouvain.be:boreal:245890 2024-05-12T07:53:15+00:00 Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet Kittel, Christoph Amory, Charles Agosta, Cécile Jourdain, Nicolas C. Hofer, Stefan Delhasse, Alison Doutreloup, Sébastien Huot, Pierre-Vincent Lang, Charlotte Fichefet, Thierry Fettweis, Xavier UCL - SST/ELI/ELIC - Earth & Climate 2021 http://hdl.handle.net/2078.1/245890 https://doi.org/10.5194/tc-15-1215-2021 eng eng Copernicus GmbH boreal:245890 http://hdl.handle.net/2078.1/245890 doi:10.5194/tc-15-1215-2021 urn:ISSN:1994-0416 urn:EISSN:1994-0424 info:eu-repo/semantics/openAccess The Cryosphere, Vol. 15, no.3, p. 1215-1236 (2021) Earth-Surface Processes Water Science and Technology info:eu-repo/semantics/article 2021 ftunistlouisbrus https://doi.org/10.5194/tc-15-1215-2021 2024-04-18T17:18:33Z The future surface mass balance (SMB) will influence the ice dynamics and the contribution of the Antarctic ice sheet (AIS) to the sea level rise. Most of recent Antarctic SMB projections were based on the fifth phase of the Coupled Model Intercomparison Project (CMIP5). However, new CMIP6 results have revealed a +1.3 ∘C higher mean Antarctic near-surface temperature than in CMIP5 at the end of the 21st century, enabling estimations of future SMB in warmer climates. Here, we investigate the AIS sensitivity to different warmings with an ensemble of four simulations performed with the polar regional climate model Modèle Atmosphérique Régional (MAR) forced by two CMIP5 and two CMIP6 models over 1981–2100. Statistical extrapolation enables us to expand our results to the whole CMIP5 and CMIP6 ensembles. Our results highlight a contrasting effect on the future grounded ice sheet and the ice shelves. The SMB over grounded ice is projected to increase as a response to stronger snowfall, only partly offset by enhanced meltwater run-off. This leads to a cumulated sea-level-rise mitigation (i.e. an increase in surface mass) of the grounded Antarctic surface by 5.1 ± 1.9 cm sea level equivalent (SLE) in CMIP5-RCP8.5 (Relative Concentration Pathway 8.5) and 6.3 ± 2.0 cm SLE in CMIP6-ssp585 (Shared Socioeconomic Pathways 585). Additionally, the CMIP6 low-emission ssp126 and intermediate-emission ssp245 scenarios project a stabilized surface mass gain, resulting in a lower mitigation to sea level rise than in ssp585. Over the ice shelves, the strong run-off increase associated with higher temperature is projected to decrease the SMB (more strongly in CMIP6-ssp585 compared to CMIP5-RCP8.5). Ice shelves are however predicted to have a close-to-present-equilibrium stable SMB under CMIP6 ssp126 and ssp245 scenarios. Future uncertainties are mainly due to the sensitivity to anthropogenic forcing and the timing of the projected warming. While ice shelves should remain at a close-to-equilibrium stable SMB ... Article in Journal/Newspaper Antarc* Antarctic Ice Sheet Ice Shelves The Cryosphere DIAL@USL-B (Université Saint-Louis, Bruxelles) Antarctic The Antarctic The Cryosphere 15 3 1215 1236
institution Open Polar
collection DIAL@USL-B (Université Saint-Louis, Bruxelles)
op_collection_id ftunistlouisbrus
language English
topic Earth-Surface Processes
Water Science and Technology
spellingShingle Earth-Surface Processes
Water Science and Technology
Kittel, Christoph
Amory, Charles
Agosta, Cécile
Jourdain, Nicolas C.
Hofer, Stefan
Delhasse, Alison
Doutreloup, Sébastien
Huot, Pierre-Vincent
Lang, Charlotte
Fichefet, Thierry
Fettweis, Xavier
Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet
topic_facet Earth-Surface Processes
Water Science and Technology
description The future surface mass balance (SMB) will influence the ice dynamics and the contribution of the Antarctic ice sheet (AIS) to the sea level rise. Most of recent Antarctic SMB projections were based on the fifth phase of the Coupled Model Intercomparison Project (CMIP5). However, new CMIP6 results have revealed a +1.3 ∘C higher mean Antarctic near-surface temperature than in CMIP5 at the end of the 21st century, enabling estimations of future SMB in warmer climates. Here, we investigate the AIS sensitivity to different warmings with an ensemble of four simulations performed with the polar regional climate model Modèle Atmosphérique Régional (MAR) forced by two CMIP5 and two CMIP6 models over 1981–2100. Statistical extrapolation enables us to expand our results to the whole CMIP5 and CMIP6 ensembles. Our results highlight a contrasting effect on the future grounded ice sheet and the ice shelves. The SMB over grounded ice is projected to increase as a response to stronger snowfall, only partly offset by enhanced meltwater run-off. This leads to a cumulated sea-level-rise mitigation (i.e. an increase in surface mass) of the grounded Antarctic surface by 5.1 ± 1.9 cm sea level equivalent (SLE) in CMIP5-RCP8.5 (Relative Concentration Pathway 8.5) and 6.3 ± 2.0 cm SLE in CMIP6-ssp585 (Shared Socioeconomic Pathways 585). Additionally, the CMIP6 low-emission ssp126 and intermediate-emission ssp245 scenarios project a stabilized surface mass gain, resulting in a lower mitigation to sea level rise than in ssp585. Over the ice shelves, the strong run-off increase associated with higher temperature is projected to decrease the SMB (more strongly in CMIP6-ssp585 compared to CMIP5-RCP8.5). Ice shelves are however predicted to have a close-to-present-equilibrium stable SMB under CMIP6 ssp126 and ssp245 scenarios. Future uncertainties are mainly due to the sensitivity to anthropogenic forcing and the timing of the projected warming. While ice shelves should remain at a close-to-equilibrium stable SMB ...
author2 UCL - SST/ELI/ELIC - Earth & Climate
format Article in Journal/Newspaper
author Kittel, Christoph
Amory, Charles
Agosta, Cécile
Jourdain, Nicolas C.
Hofer, Stefan
Delhasse, Alison
Doutreloup, Sébastien
Huot, Pierre-Vincent
Lang, Charlotte
Fichefet, Thierry
Fettweis, Xavier
author_facet Kittel, Christoph
Amory, Charles
Agosta, Cécile
Jourdain, Nicolas C.
Hofer, Stefan
Delhasse, Alison
Doutreloup, Sébastien
Huot, Pierre-Vincent
Lang, Charlotte
Fichefet, Thierry
Fettweis, Xavier
author_sort Kittel, Christoph
title Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet
title_short Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet
title_full Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet
title_fullStr Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet
title_full_unstemmed Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet
title_sort diverging future surface mass balance between the antarctic ice shelves and grounded ice sheet
publisher Copernicus GmbH
publishDate 2021
url http://hdl.handle.net/2078.1/245890
https://doi.org/10.5194/tc-15-1215-2021
geographic Antarctic
The Antarctic
geographic_facet Antarctic
The Antarctic
genre Antarc*
Antarctic
Ice Sheet
Ice Shelves
The Cryosphere
genre_facet Antarc*
Antarctic
Ice Sheet
Ice Shelves
The Cryosphere
op_source The Cryosphere, Vol. 15, no.3, p. 1215-1236 (2021)
op_relation boreal:245890
http://hdl.handle.net/2078.1/245890
doi:10.5194/tc-15-1215-2021
urn:ISSN:1994-0416
urn:EISSN:1994-0424
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/tc-15-1215-2021
container_title The Cryosphere
container_volume 15
container_issue 3
container_start_page 1215
op_container_end_page 1236
_version_ 1798841725575233536