Online fat detection and evaluation in modelling digital physiological fish

The accumulation of excess fat in fish might impair the health of fish in aquaculture. This paper introduces an online sequential extreme learning machine (OSâ€ELM) into regionâ€ofâ€interest (ROI) detection of adipose tissues in fish digitalized by means of magnetic resonance imaging (MRI). Three ty...

Full description

Bibliographic Details
Main Authors: Nian, Rui, Gao, Mingshan, Kong, Shuang, Yu, Junjie, Wang, Ruirui, Li, Xueshan, Zhang, Shichang, Hao, Baochen, Xu, Xiao, Che, Renzheng, Ai, Qinghui, Macq, Benoît
Other Authors: UCL - SST/ICTM/ELEN - Pôle en ingénierie électrique
Format: Article in Journal/Newspaper
Language:English
Published: Wiley-Blackwell Publishing Ltd. 2020
Subjects:
Online Access:http://hdl.handle.net/2078.1/245832
id ftunistlouisbrus:oai:dial.uclouvain.be:boreal:245832
record_format openpolar
spelling ftunistlouisbrus:oai:dial.uclouvain.be:boreal:245832 2024-05-12T08:10:41+00:00 Online fat detection and evaluation in modelling digital physiological fish Nian, Rui Gao, Mingshan Kong, Shuang Yu, Junjie Wang, Ruirui Li, Xueshan Zhang, Shichang Hao, Baochen Xu, Xiao Che, Renzheng Ai, Qinghui Macq, Benoît UCL - SST/ICTM/ELEN - Pôle en ingénierie électrique 2020 http://hdl.handle.net/2078.1/245832 eng eng Wiley-Blackwell Publishing Ltd. boreal:245832 http://hdl.handle.net/2078.1/245832 urn:ISSN:1355-557X urn:EISSN:1365-2109 info:eu-repo/semantics/openAccess Aquaculture Research, Vol. 51, no.8, p. 3175-3190 (2020) info:eu-repo/semantics/article 2020 ftunistlouisbrus 2024-04-18T17:18:33Z The accumulation of excess fat in fish might impair the health of fish in aquaculture. This paper introduces an online sequential extreme learning machine (OSâ€ELM) into regionâ€ofâ€interest (ROI) detection of adipose tissues in fish digitalized by means of magnetic resonance imaging (MRI). Three typical economic fish species, turbot (Scophthalmus maximus L.), large yellow croaker (Pseudosciaena crocea R.) and Japanese seabass (Lateolabrax japonicus), were selected to compose into digital physiological atlas. We manually labelled with ITKâ€SNAP discriminating adipose tissue regions as standard references. Then, singleâ€hiddenâ€layer feedforward neural networks (SLFNs) were established to deduce the potential mathematical criterion for fat detection via OSâ€ELM for each fish species. We further carried out classical adaptive segmentation to extract details in fat location and distribution of adipose tissues. Article in Journal/Newspaper Scophthalmus maximus Turbot DIAL@USL-B (Université Saint-Louis, Bruxelles)
institution Open Polar
collection DIAL@USL-B (Université Saint-Louis, Bruxelles)
op_collection_id ftunistlouisbrus
language English
description The accumulation of excess fat in fish might impair the health of fish in aquaculture. This paper introduces an online sequential extreme learning machine (OSâ€ELM) into regionâ€ofâ€interest (ROI) detection of adipose tissues in fish digitalized by means of magnetic resonance imaging (MRI). Three typical economic fish species, turbot (Scophthalmus maximus L.), large yellow croaker (Pseudosciaena crocea R.) and Japanese seabass (Lateolabrax japonicus), were selected to compose into digital physiological atlas. We manually labelled with ITKâ€SNAP discriminating adipose tissue regions as standard references. Then, singleâ€hiddenâ€layer feedforward neural networks (SLFNs) were established to deduce the potential mathematical criterion for fat detection via OSâ€ELM for each fish species. We further carried out classical adaptive segmentation to extract details in fat location and distribution of adipose tissues.
author2 UCL - SST/ICTM/ELEN - Pôle en ingénierie électrique
format Article in Journal/Newspaper
author Nian, Rui
Gao, Mingshan
Kong, Shuang
Yu, Junjie
Wang, Ruirui
Li, Xueshan
Zhang, Shichang
Hao, Baochen
Xu, Xiao
Che, Renzheng
Ai, Qinghui
Macq, Benoît
spellingShingle Nian, Rui
Gao, Mingshan
Kong, Shuang
Yu, Junjie
Wang, Ruirui
Li, Xueshan
Zhang, Shichang
Hao, Baochen
Xu, Xiao
Che, Renzheng
Ai, Qinghui
Macq, Benoît
Online fat detection and evaluation in modelling digital physiological fish
author_facet Nian, Rui
Gao, Mingshan
Kong, Shuang
Yu, Junjie
Wang, Ruirui
Li, Xueshan
Zhang, Shichang
Hao, Baochen
Xu, Xiao
Che, Renzheng
Ai, Qinghui
Macq, Benoît
author_sort Nian, Rui
title Online fat detection and evaluation in modelling digital physiological fish
title_short Online fat detection and evaluation in modelling digital physiological fish
title_full Online fat detection and evaluation in modelling digital physiological fish
title_fullStr Online fat detection and evaluation in modelling digital physiological fish
title_full_unstemmed Online fat detection and evaluation in modelling digital physiological fish
title_sort online fat detection and evaluation in modelling digital physiological fish
publisher Wiley-Blackwell Publishing Ltd.
publishDate 2020
url http://hdl.handle.net/2078.1/245832
genre Scophthalmus maximus
Turbot
genre_facet Scophthalmus maximus
Turbot
op_source Aquaculture Research, Vol. 51, no.8, p. 3175-3190 (2020)
op_relation boreal:245832
http://hdl.handle.net/2078.1/245832
urn:ISSN:1355-557X
urn:EISSN:1365-2109
op_rights info:eu-repo/semantics/openAccess
_version_ 1798854169996558336