Isotopes of Carbon in a Karst Acquifer of the Cumberland Plateau of Kentucky, USA
In this study, the concentration and isotopic composition of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) are measured in the karst groundwater of the Otter Creek watershed of the Cumberland Plateau of Kentucky, USA. Comparisons among these data and with the geochemistry of ca...
Main Author: | |
---|---|
Format: | Text |
Language: | English Slovenian |
Published: |
Digital Commons @ University of South Florida
2013
|
Subjects: | |
Online Access: | https://digitalcommons.usf.edu/kip_articles/6415 https://digitalcommons.usf.edu/context/kip_articles/article/7415/viewcontent/Florea.pdf |
id |
ftunisfloridatam:oai:digitalcommons.usf.edu:kip_articles-7415 |
---|---|
record_format |
openpolar |
spelling |
ftunisfloridatam:oai:digitalcommons.usf.edu:kip_articles-7415 2023-10-09T21:50:41+02:00 Isotopes of Carbon in a Karst Acquifer of the Cumberland Plateau of Kentucky, USA Florea, Lee J. 2013-01-01T08:00:00Z application/pdf https://digitalcommons.usf.edu/kip_articles/6415 https://digitalcommons.usf.edu/context/kip_articles/article/7415/viewcontent/Florea.pdf English and Slovenian eng slv Digital Commons @ University of South Florida https://digitalcommons.usf.edu/kip_articles/6415 https://digitalcommons.usf.edu/context/kip_articles/article/7415/viewcontent/Florea.pdf KIP Articles Dissolved organic carbon Dissolved inorganic carbon Sulfur redox Ion geochemistry Saturation index text 2013 ftunisfloridatam 2023-09-14T18:06:26Z In this study, the concentration and isotopic composition of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) are measured in the karst groundwater of the Otter Creek watershed of the Cumberland Plateau of Kentucky, USA. Comparisons among these data and with the geochemistry of carbonate and gypsum equilibrium reactions reveal that DOC concentration is inversely related to discharge, multiple reaction pathways provide DIC with isotopic enrichment that may be directly related to mineral saturation, and oxidation of reduced sulfur is possible for dissolution. DOC is derived from C3 vegetation with an average δ13CDOC of ‒27‰. DIC in groundwater is derived from both pedogenic CO2 and HCO3- from dissolved carbonate. At input sites to the karst aquifer DIC concentrations are expectedly low, less than 1 mmol/L, in waters that are undersaturated with respect to calcite. At the output of these karst aquifers DIC concentrations reach 3 mmol/L in waters that are at or above calcite saturation. Values of δ13CDIC range between ‒6.3 and ‒12.4‰ with CO2 degassing and calcite precipitation at some sites obfuscating a simple relationship between δ13CDIC, discharge, and mineral saturation. In addition, concentrations of DIC in sulfur seeps within the watershed range between 2–7 mmol/L with δ13CDIC values in some samples skewed more toward the anticipated value of carbonate bedrock than would be expected from reactions with carbonic acid alone. This suggests that the oxidation of reduced sulfur from shallow oilfield brines liberates bedrock DIC through reactions with sulfuric acid. Text Carbonic acid Digital Commons University of South Florida (USF) |
institution |
Open Polar |
collection |
Digital Commons University of South Florida (USF) |
op_collection_id |
ftunisfloridatam |
language |
English Slovenian |
topic |
Dissolved organic carbon Dissolved inorganic carbon Sulfur redox Ion geochemistry Saturation index |
spellingShingle |
Dissolved organic carbon Dissolved inorganic carbon Sulfur redox Ion geochemistry Saturation index Florea, Lee J. Isotopes of Carbon in a Karst Acquifer of the Cumberland Plateau of Kentucky, USA |
topic_facet |
Dissolved organic carbon Dissolved inorganic carbon Sulfur redox Ion geochemistry Saturation index |
description |
In this study, the concentration and isotopic composition of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) are measured in the karst groundwater of the Otter Creek watershed of the Cumberland Plateau of Kentucky, USA. Comparisons among these data and with the geochemistry of carbonate and gypsum equilibrium reactions reveal that DOC concentration is inversely related to discharge, multiple reaction pathways provide DIC with isotopic enrichment that may be directly related to mineral saturation, and oxidation of reduced sulfur is possible for dissolution. DOC is derived from C3 vegetation with an average δ13CDOC of ‒27‰. DIC in groundwater is derived from both pedogenic CO2 and HCO3- from dissolved carbonate. At input sites to the karst aquifer DIC concentrations are expectedly low, less than 1 mmol/L, in waters that are undersaturated with respect to calcite. At the output of these karst aquifers DIC concentrations reach 3 mmol/L in waters that are at or above calcite saturation. Values of δ13CDIC range between ‒6.3 and ‒12.4‰ with CO2 degassing and calcite precipitation at some sites obfuscating a simple relationship between δ13CDIC, discharge, and mineral saturation. In addition, concentrations of DIC in sulfur seeps within the watershed range between 2–7 mmol/L with δ13CDIC values in some samples skewed more toward the anticipated value of carbonate bedrock than would be expected from reactions with carbonic acid alone. This suggests that the oxidation of reduced sulfur from shallow oilfield brines liberates bedrock DIC through reactions with sulfuric acid. |
format |
Text |
author |
Florea, Lee J. |
author_facet |
Florea, Lee J. |
author_sort |
Florea, Lee J. |
title |
Isotopes of Carbon in a Karst Acquifer of the Cumberland Plateau of Kentucky, USA |
title_short |
Isotopes of Carbon in a Karst Acquifer of the Cumberland Plateau of Kentucky, USA |
title_full |
Isotopes of Carbon in a Karst Acquifer of the Cumberland Plateau of Kentucky, USA |
title_fullStr |
Isotopes of Carbon in a Karst Acquifer of the Cumberland Plateau of Kentucky, USA |
title_full_unstemmed |
Isotopes of Carbon in a Karst Acquifer of the Cumberland Plateau of Kentucky, USA |
title_sort |
isotopes of carbon in a karst acquifer of the cumberland plateau of kentucky, usa |
publisher |
Digital Commons @ University of South Florida |
publishDate |
2013 |
url |
https://digitalcommons.usf.edu/kip_articles/6415 https://digitalcommons.usf.edu/context/kip_articles/article/7415/viewcontent/Florea.pdf |
genre |
Carbonic acid |
genre_facet |
Carbonic acid |
op_source |
KIP Articles |
op_relation |
https://digitalcommons.usf.edu/kip_articles/6415 https://digitalcommons.usf.edu/context/kip_articles/article/7415/viewcontent/Florea.pdf |
_version_ |
1779313756128411648 |