An Interdisciplinary Approach to Understanding Predator-Prey Relationships in a Changing Ocean: From System Design to Education

Climate change is ecologically and socially complex, deemed the most important issue of our generation. Through this dissertation I have approached climate change research through an interdisciplinary perspective, investigating how this phenomenon will affect marine ecological systems, how we can be...

Full description

Bibliographic Details
Main Author: Freytes-Ortiz, Ileana M.
Format: Doctoral or Postdoctoral Thesis
Language:unknown
Published: Digital Commons @ University of South Florida 2018
Subjects:
Online Access:https://digitalcommons.usf.edu/etd/7673
https://digitalcommons.usf.edu/context/etd/article/8870/viewcontent/FreytesOrtiz_usf_0206D_14931.pdf
Description
Summary:Climate change is ecologically and socially complex, deemed the most important issue of our generation. Through this dissertation I have approached climate change research through an interdisciplinary perspective, investigating how this phenomenon will affect marine ecological systems, how we can better develop experimental systems to answer ecological questions, and how we can effectively educate about this issue. In Chapter 2, I provided accessible alternatives for researching the effects of climate change (elevated temperatures and pCO2) on marine ecosystems. I designed, built, and troubleshooted two accurate and inexpensive climate-controlled experimental systems capable of maintaining target conditions: a temperature-controlled system and an ocean acidification system. The temperature-controlled system was designed to manipulate experimental tank temperatures indirectly by controlling the temperature in a surrounding water bath, which buffered fluctuations and resulted in a high level of control. The ocean acidification experimental system was designed to elevate normally fluctuating pCO2 levels by a constant factor, which allowed pCO2 to fluctuate as expected in natural environments and made it more ecologically relevant than active pCO2-controlled systems. In Chapter 3, I experimentally tested the morphological responses of southern ribbed mussels Geukensia granosissima to two simultaneous stressors (elevated temperatures and the presence of water-borne predation cues from blue crab Callinectes sapidus) and if any effects of these treatments led to differences in handling times by predatory crabs. Bivalves may become more susceptible to predation as increased temperatures decrease the protection afforded by their shells, but few studies have tested the effects of elevated temperatures on inducible defenses in bivalves. Results showed that chronic heat stress can have detrimental morphological effects on intertidal mussels. Mussels reared in elevated temperatures manifested elongated shell shapes, ...