Uncertainties of SeaWiFS and MODIS Remote Sensing Reflectance: Implications from Clear Water Measurements

A fundamental parameter derived from satellite ocean color measurements is the spectral remote sensing reflectance, Rrs(λ) (sr− 1), which is used as the input to all inversion algorithms to derive bio-optical properties (e.g., chlorophyll-a concentration or Chl in mg m− 3) and water's inherent...

Full description

Bibliographic Details
Published in:Remote Sensing of Environment
Main Authors: Hu, Chuanmin M., Feng, Lian, Lee, ZhongPing
Format: Article in Journal/Newspaper
Language:unknown
Published: Digital Commons @ University of South Florida 2013
Subjects:
Online Access:https://digitalcommons.usf.edu/cimage_pubs/113
https://doi.org/10.1016/j.rse.2013.02.012
id ftunisfloridatam:oai:digitalcommons.usf.edu:cimage_pubs-1101
record_format openpolar
spelling ftunisfloridatam:oai:digitalcommons.usf.edu:cimage_pubs-1101 2023-05-15T17:33:17+02:00 Uncertainties of SeaWiFS and MODIS Remote Sensing Reflectance: Implications from Clear Water Measurements Hu, Chuanmin M. Feng, Lian Lee, ZhongPing 2013-06-01T07:00:00Z https://digitalcommons.usf.edu/cimage_pubs/113 https://doi.org/10.1016/j.rse.2013.02.012 unknown Digital Commons @ University of South Florida https://digitalcommons.usf.edu/cimage_pubs/113 https://doi.org/10.1016/j.rse.2013.02.012 C-IMAGE Publications SeaWiFS MODIS GEO-CAPE PACE Remote sensing Remote sensing reflectance Uncertainty Calibration Validation Life Sciences Marine Biology article 2013 ftunisfloridatam https://doi.org/10.1016/j.rse.2013.02.012 2021-10-09T06:43:15Z A fundamental parameter derived from satellite ocean color measurements is the spectral remote sensing reflectance, Rrs(λ) (sr− 1), which is used as the input to all inversion algorithms to derive bio-optical properties (e.g., chlorophyll-a concentration or Chl in mg m− 3) and water's inherent optical properties (IOPs). The accuracy and uncertainties of the satellite-derived Rrs have only been assessed through comparisons with in situ measurements that were often limited in both space and time. Here, a novel approach was developed and used to estimate Rrs uncertainties from SeaWiFS and MODIS/Aqua (MODISA) measurements over clear waters. The study focused on two oligotrophic ocean gyres in the North Atlantic and South Pacific, and used a recently developed new Chl algorithm to provide a constraint to determine the highest-quality Rrs data with minimal errors. These data were used as surrogates of “ground truth” or references (termed as Rrs,true) to estimate the Rrs error in each data point, with uncertainty estimates (in both relative and absolute forms) generated from statistical analyses. The study led to several findings: One, both SeaWiFS and MODISA have met their mission goals of achieving Rrs uncertainties and absolute accuracy (assuming that the Rrs,true values can represent the truth) to within 5% for blue bands and blue waters. As a comparison, nearly all previous in situ-based validation efforts reported mean (or median) percentage differences exceeding 10% between in situ and satellite Rrs in the blue bands. Two, for the green bands, Rrs uncertainties are significantly higher, often in the range of 10–15% for oligotrophic waters. Three, SeaWiFS Rrs uncertainties are generally higher than those of MODISA, possibly due to its lower signal-to-noise ratio (SNR). Four, all Rrs errors are spectrally related in a monotonous way from the blue to the red wavelengths, suggesting that these errors are resulted primarily from the imperfect atmospheric correction algorithms as opposed to sensor noise or vicarious calibration. Such empirical relationships are shown to be useful in reducing the Rrs uncertainties for the North Atlantic Gyre and may also be useful for most of the ocean waters. Finally, the tabulated results provide lower bounds of Rrs(λ) uncertainties for more productive waters. The findings may serve as references for future ocean color missions, and they have also significant implications for uncertainty estimates of other ocean color data products. Article in Journal/Newspaper North Atlantic Digital Commons University of South Florida (USF) Pacific Remote Sensing of Environment 133 168 182
institution Open Polar
collection Digital Commons University of South Florida (USF)
op_collection_id ftunisfloridatam
language unknown
topic SeaWiFS
MODIS
GEO-CAPE
PACE
Remote sensing
Remote sensing reflectance
Uncertainty
Calibration
Validation
Life Sciences
Marine Biology
spellingShingle SeaWiFS
MODIS
GEO-CAPE
PACE
Remote sensing
Remote sensing reflectance
Uncertainty
Calibration
Validation
Life Sciences
Marine Biology
Hu, Chuanmin M.
Feng, Lian
Lee, ZhongPing
Uncertainties of SeaWiFS and MODIS Remote Sensing Reflectance: Implications from Clear Water Measurements
topic_facet SeaWiFS
MODIS
GEO-CAPE
PACE
Remote sensing
Remote sensing reflectance
Uncertainty
Calibration
Validation
Life Sciences
Marine Biology
description A fundamental parameter derived from satellite ocean color measurements is the spectral remote sensing reflectance, Rrs(λ) (sr− 1), which is used as the input to all inversion algorithms to derive bio-optical properties (e.g., chlorophyll-a concentration or Chl in mg m− 3) and water's inherent optical properties (IOPs). The accuracy and uncertainties of the satellite-derived Rrs have only been assessed through comparisons with in situ measurements that were often limited in both space and time. Here, a novel approach was developed and used to estimate Rrs uncertainties from SeaWiFS and MODIS/Aqua (MODISA) measurements over clear waters. The study focused on two oligotrophic ocean gyres in the North Atlantic and South Pacific, and used a recently developed new Chl algorithm to provide a constraint to determine the highest-quality Rrs data with minimal errors. These data were used as surrogates of “ground truth” or references (termed as Rrs,true) to estimate the Rrs error in each data point, with uncertainty estimates (in both relative and absolute forms) generated from statistical analyses. The study led to several findings: One, both SeaWiFS and MODISA have met their mission goals of achieving Rrs uncertainties and absolute accuracy (assuming that the Rrs,true values can represent the truth) to within 5% for blue bands and blue waters. As a comparison, nearly all previous in situ-based validation efforts reported mean (or median) percentage differences exceeding 10% between in situ and satellite Rrs in the blue bands. Two, for the green bands, Rrs uncertainties are significantly higher, often in the range of 10–15% for oligotrophic waters. Three, SeaWiFS Rrs uncertainties are generally higher than those of MODISA, possibly due to its lower signal-to-noise ratio (SNR). Four, all Rrs errors are spectrally related in a monotonous way from the blue to the red wavelengths, suggesting that these errors are resulted primarily from the imperfect atmospheric correction algorithms as opposed to sensor noise or vicarious calibration. Such empirical relationships are shown to be useful in reducing the Rrs uncertainties for the North Atlantic Gyre and may also be useful for most of the ocean waters. Finally, the tabulated results provide lower bounds of Rrs(λ) uncertainties for more productive waters. The findings may serve as references for future ocean color missions, and they have also significant implications for uncertainty estimates of other ocean color data products.
format Article in Journal/Newspaper
author Hu, Chuanmin M.
Feng, Lian
Lee, ZhongPing
author_facet Hu, Chuanmin M.
Feng, Lian
Lee, ZhongPing
author_sort Hu, Chuanmin M.
title Uncertainties of SeaWiFS and MODIS Remote Sensing Reflectance: Implications from Clear Water Measurements
title_short Uncertainties of SeaWiFS and MODIS Remote Sensing Reflectance: Implications from Clear Water Measurements
title_full Uncertainties of SeaWiFS and MODIS Remote Sensing Reflectance: Implications from Clear Water Measurements
title_fullStr Uncertainties of SeaWiFS and MODIS Remote Sensing Reflectance: Implications from Clear Water Measurements
title_full_unstemmed Uncertainties of SeaWiFS and MODIS Remote Sensing Reflectance: Implications from Clear Water Measurements
title_sort uncertainties of seawifs and modis remote sensing reflectance: implications from clear water measurements
publisher Digital Commons @ University of South Florida
publishDate 2013
url https://digitalcommons.usf.edu/cimage_pubs/113
https://doi.org/10.1016/j.rse.2013.02.012
geographic Pacific
geographic_facet Pacific
genre North Atlantic
genre_facet North Atlantic
op_source C-IMAGE Publications
op_relation https://digitalcommons.usf.edu/cimage_pubs/113
https://doi.org/10.1016/j.rse.2013.02.012
op_doi https://doi.org/10.1016/j.rse.2013.02.012
container_title Remote Sensing of Environment
container_volume 133
container_start_page 168
op_container_end_page 182
_version_ 1766131758072332288