Acetylation of (R,S)-propranolol catalyzed by Candida antarctica lipase B: An experimental and computational study

The chemo- and enantioselectivity of the Candida antarctica lipase B (CalB)-catalyzed acetylation reaction of (R,S)-propranolol using vinyl acetate as acyl donor and toluene as organic solvent was studied. Because of the poor solubility of propranolol in toluene small quantities of methanol were add...

Full description

Bibliographic Details
Published in:Journal of Molecular Catalysis B: Enzymatic
Main Authors: Escorcia, Andrés M., Molina, Daniel, Daza, Martha C., Doerr, Markus
Format: Other/Unknown Material
Language:unknown
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/11634/21014
https://doi.org/10.1016/j.molcatb.2013.09.019
id ftunisantotomasc:oai:repository.usta.edu.co:11634/21014
record_format openpolar
spelling ftunisantotomasc:oai:repository.usta.edu.co:11634/21014 2024-09-15T17:48:23+00:00 Acetylation of (R,S)-propranolol catalyzed by Candida antarctica lipase B: An experimental and computational study Escorcia, Andrés M. Molina, Daniel Daza, Martha C. Doerr, Markus CRAI-USTA Bogotá 2013-09-25 application/pdf http://hdl.handle.net/11634/21014 https://doi.org/10.1016/j.molcatb.2013.09.019 unknown A.M. Barret, J. Pharmacol. 16 (1985) 95–108 R. Rabkin, D.P. Stables, N.W. Levin, M.M. Suzman, Am. J. Cardiol. 18 (1966) 370–380. E.M. Besterman, D.H. Friedlander, Postgrad. Med. J. 41 (1965) 526–535. C.V.S. Ram, Am. J. Cardiol. 102 (2008) 242–244. S. Belknap, Evid. Based. Med. 13 (2008) 50. D. Patakas, V. Argiropoulou, G. Louridas, V. Tsara, Thorax 38 (1983) 108–112. H.S. Bevinakatti, A.A. Banerji, J. Org. Chem. 56 (1991) 5372–5375. S.V. Darnle, P.N. Patil, M.M. Salunkhe, Synth. Commun. 29 (1999) 3855–3862. A. Kamal, M. Sandbhor, A. Ali Shaik, Bioorg. Med. Chem. Lett. 14 (2004) 4581–4583. R.A. Veloo, G.-J. Koomen, Tetrahedron: Asymmetry 4 (1993) 2401–2404. H. Sasai, N. Itoh, T. Suzuki, M. Shibasaki, Tetrahedron Lett. 34 (1993) 855–858. Y.-F. Wang, S.-T. Chen, K.K.-C. Liu, C.-H. Wong, Tetrahedron Lett. 30 (1989) 1917–1920. O. Barbosa, C. Ariza, C. Ortiz, R. Torres, New Biotechnol. 27 (2010) 844–850. T.-W. Chiou, C.-C. Chang, C.-T. Lai, D.-F. Tai, Bioorg. Med. Chem. Lett. 7 (1997) 433–436. R. Ávila-González, M. Pérez-Gilabert, F. García-Carmona, J. Biosci. Bioeng. 100 (2005) 423–428. R. Ávila, R. Ruiz, D. Amaro-González, O. Díaz, J.A. González, A.J. Núnez, ˜ Lat. Am. Appl. Res. 35 (2005) 307–311. V. Gotor-Fernández, R. Brieva, V. Gotor, J. Mol. Catal. B: Enzym. 40 (2006) 111–120. A. Ghanem, H.Y. Aboul-Enein, Tetrahedron: Asymmetry 15 (2004) 3331–3351. A. Ghanem, Tetrahedron 63 (2007) 1721–1754. M.T. Reetz, Curr. Opin. Chem. Biol. 6 (2002) 145–150. http://hdl.handle.net/11634/21014 https://doi.org/10.1016/j.molcatb.2013.09.019 Atribución-NoComercial-CompartirIgual 2.5 Colombia http://creativecommons.org/licenses/by-nc-sa/2.5/co/ Candida antarctica lipase B Chiral resolution Molecular modeling NMR spectroscopy Chemoselectivity Generación de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos 2013 ftunisantotomasc https://doi.org/10.1016/j.molcatb.2013.09.019 2024-06-25T03:49:39Z The chemo- and enantioselectivity of the Candida antarctica lipase B (CalB)-catalyzed acetylation reaction of (R,S)-propranolol using vinyl acetate as acyl donor and toluene as organic solvent was studied. Because of the poor solubility of propranolol in toluene small quantities of methanol were added as cosolvent. The effects of the propranolol/vinyl acetate ratio, the enzyme purification procedure and the methanol concentration on the reaction were investigated. The reactions occurring in the system were quantitatively investigated using 1H and 13C NMR spectroscopy. The major reactions were the hydrolysis and alcoholysis of vinyl acetate, as a consequence of the presence of residual water and methanol in the reaction medium. Furthermore, the NMR analysis confirmed that O-acetyl-propranolol was formed exclusively. The reaction was also found to be enantioselective favoring the faster transformation of the R-propranolol. In addition to the experiments, molecular modeling was used to study the formation of the reactive Michaelis complexes between propranolol and acetylated CalB, using a combined molecular docking and molecular dynamics (MD) procedure. Only for the O-acetylation we found binding modes of the substrate leading to formation of the product, which explains the experimentally observed chemoselectivity of CalB. http://unidadinvestigacion.usta.edu.co Other/Unknown Material Antarc* Antarctica Repositorio Institucional de la Universidad Santo Tomás Journal of Molecular Catalysis B: Enzymatic 98 21 29
institution Open Polar
collection Repositorio Institucional de la Universidad Santo Tomás
op_collection_id ftunisantotomasc
language unknown
topic Candida antarctica lipase B
Chiral resolution
Molecular modeling
NMR spectroscopy
Chemoselectivity
spellingShingle Candida antarctica lipase B
Chiral resolution
Molecular modeling
NMR spectroscopy
Chemoselectivity
Escorcia, Andrés M.
Molina, Daniel
Daza, Martha C.
Doerr, Markus
Acetylation of (R,S)-propranolol catalyzed by Candida antarctica lipase B: An experimental and computational study
topic_facet Candida antarctica lipase B
Chiral resolution
Molecular modeling
NMR spectroscopy
Chemoselectivity
description The chemo- and enantioselectivity of the Candida antarctica lipase B (CalB)-catalyzed acetylation reaction of (R,S)-propranolol using vinyl acetate as acyl donor and toluene as organic solvent was studied. Because of the poor solubility of propranolol in toluene small quantities of methanol were added as cosolvent. The effects of the propranolol/vinyl acetate ratio, the enzyme purification procedure and the methanol concentration on the reaction were investigated. The reactions occurring in the system were quantitatively investigated using 1H and 13C NMR spectroscopy. The major reactions were the hydrolysis and alcoholysis of vinyl acetate, as a consequence of the presence of residual water and methanol in the reaction medium. Furthermore, the NMR analysis confirmed that O-acetyl-propranolol was formed exclusively. The reaction was also found to be enantioselective favoring the faster transformation of the R-propranolol. In addition to the experiments, molecular modeling was used to study the formation of the reactive Michaelis complexes between propranolol and acetylated CalB, using a combined molecular docking and molecular dynamics (MD) procedure. Only for the O-acetylation we found binding modes of the substrate leading to formation of the product, which explains the experimentally observed chemoselectivity of CalB. http://unidadinvestigacion.usta.edu.co
format Other/Unknown Material
author Escorcia, Andrés M.
Molina, Daniel
Daza, Martha C.
Doerr, Markus
author_facet Escorcia, Andrés M.
Molina, Daniel
Daza, Martha C.
Doerr, Markus
author_sort Escorcia, Andrés M.
title Acetylation of (R,S)-propranolol catalyzed by Candida antarctica lipase B: An experimental and computational study
title_short Acetylation of (R,S)-propranolol catalyzed by Candida antarctica lipase B: An experimental and computational study
title_full Acetylation of (R,S)-propranolol catalyzed by Candida antarctica lipase B: An experimental and computational study
title_fullStr Acetylation of (R,S)-propranolol catalyzed by Candida antarctica lipase B: An experimental and computational study
title_full_unstemmed Acetylation of (R,S)-propranolol catalyzed by Candida antarctica lipase B: An experimental and computational study
title_sort acetylation of (r,s)-propranolol catalyzed by candida antarctica lipase b: an experimental and computational study
publishDate 2013
url http://hdl.handle.net/11634/21014
https://doi.org/10.1016/j.molcatb.2013.09.019
op_coverage CRAI-USTA Bogotá
genre Antarc*
Antarctica
genre_facet Antarc*
Antarctica
op_relation A.M. Barret, J. Pharmacol. 16 (1985) 95–108
R. Rabkin, D.P. Stables, N.W. Levin, M.M. Suzman, Am. J. Cardiol. 18 (1966) 370–380.
E.M. Besterman, D.H. Friedlander, Postgrad. Med. J. 41 (1965) 526–535.
C.V.S. Ram, Am. J. Cardiol. 102 (2008) 242–244.
S. Belknap, Evid. Based. Med. 13 (2008) 50.
D. Patakas, V. Argiropoulou, G. Louridas, V. Tsara, Thorax 38 (1983) 108–112.
H.S. Bevinakatti, A.A. Banerji, J. Org. Chem. 56 (1991) 5372–5375.
S.V. Darnle, P.N. Patil, M.M. Salunkhe, Synth. Commun. 29 (1999) 3855–3862.
A. Kamal, M. Sandbhor, A. Ali Shaik, Bioorg. Med. Chem. Lett. 14 (2004) 4581–4583.
R.A. Veloo, G.-J. Koomen, Tetrahedron: Asymmetry 4 (1993) 2401–2404.
H. Sasai, N. Itoh, T. Suzuki, M. Shibasaki, Tetrahedron Lett. 34 (1993) 855–858.
Y.-F. Wang, S.-T. Chen, K.K.-C. Liu, C.-H. Wong, Tetrahedron Lett. 30 (1989) 1917–1920.
O. Barbosa, C. Ariza, C. Ortiz, R. Torres, New Biotechnol. 27 (2010) 844–850.
T.-W. Chiou, C.-C. Chang, C.-T. Lai, D.-F. Tai, Bioorg. Med. Chem. Lett. 7 (1997) 433–436.
R. Ávila-González, M. Pérez-Gilabert, F. García-Carmona, J. Biosci. Bioeng. 100 (2005) 423–428.
R. Ávila, R. Ruiz, D. Amaro-González, O. Díaz, J.A. González, A.J. Núnez, ˜ Lat. Am. Appl. Res. 35 (2005) 307–311.
V. Gotor-Fernández, R. Brieva, V. Gotor, J. Mol. Catal. B: Enzym. 40 (2006) 111–120.
A. Ghanem, H.Y. Aboul-Enein, Tetrahedron: Asymmetry 15 (2004) 3331–3351.
A. Ghanem, Tetrahedron 63 (2007) 1721–1754.
M.T. Reetz, Curr. Opin. Chem. Biol. 6 (2002) 145–150.
http://hdl.handle.net/11634/21014
https://doi.org/10.1016/j.molcatb.2013.09.019
op_rights Atribución-NoComercial-CompartirIgual 2.5 Colombia
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
op_doi https://doi.org/10.1016/j.molcatb.2013.09.019
container_title Journal of Molecular Catalysis B: Enzymatic
container_volume 98
container_start_page 21
op_container_end_page 29
_version_ 1810289523673792512