Overview: Quasi-Lagrangian observations of Arctic air mass transformations -Introduction and initial results of the HALO-(AC) 3 aircraft campaign

International audience The global warming is amplified in the Arctic. To collect data that help to constrain weather and climate models, which often do not realistically represent the enhanced Arctic warming, the HALO-(AC)³ aircraft campaign was conducted in March and April 2022 over the Norwegian a...

Full description

Bibliographic Details
Main Authors: Wendisch, Manfred, Crewell, Susanne, Ehrlich, André, Herber, Andreas, Kirbus, Benjamin, Lüpkes, Christof, Mech, Mario, Abel, Steven, J, Akansu, Elisa, F, Ament, Felix, Aubry, Clémantyne, Becker, Sebastian, Borrmann, Stephan, Bozem, Heiko, Brückner, Marlen, Clemen, Hans-Christian, Dahlke, Sandro, Dekoutsidis, Georgios, Delanoë, Julien, De La Torre Castro, Elena, Dorff, Henning, Dupuy, Regis, Eppers, Oliver, Ewald, Florian, George, Geet, Gorodetskaya, Irina, V, Grawe, Sarah, Groß, Silke, Hartmann, Jörg, Henning, Silvia, Hirsch, Lutz, Jäkel, Evelyn, Joppe, Philipp, Jourdan, Olivier, Jurányi, Zsofia, Karalis, Michail, Kellermann, Mona, Klingebiel, Marcus, Lonardi, Michael, Lucke, Johannes, Luebke, Anna, Maahn, Maximilian, Maherndl, Nina, Maturilli, Marion, Mayer, Bernhard, Mayer, Johanna, Mertes, Stephan, Michaelis, Janosch, Michalkov, Michel, Mioche, Guillaume, Moser, Manuel, Müller, Hanno, Neggers, Roel, Ori, Davide, Paul, Daria, Paulus, Fiona, Pilz, Christian, Pithan, Felix, Pöhlker, Mira, Pörtge, Veronika, Ringel, Maximilian, Risse, Nils, Roberts, Gregory, C, Rosenburg, Sophie, Röttenbacher, Johannes, Rückert, Janna, Schäfer, Michael, Schaefer, Jonas, Schemann, Vera, Schirmacher, Imke, Schmidt, Jörg, Schmidt, Sebastian, Schneider, Johannes, Schnitt, Sabrina, Schwarz, Anja, Siebert, Holger, Sodemann, Harald, Sperzel, Tim, Spreen, Gunnar, Stevens, Bjorn, Stratmann, Frank, Svensson, Gunilla, Tatzelt, Christian, Tuch, Thomas, Vihma, Timo, Voigt, Christiane, Volkmer, Lea, Walbröl, Andreas, Weber, Anna, Wehner, Birgit, Wetzel, Bruno, Wirth, Martin, Zinner, Tobias
Other Authors: Leipziger Institut für Meteorologie (LIM), Leipzig University / Universität Leipzig, Institut für Geophysik und Meteorologie Köln (IGN), Universität zu Köln = University of Cologne, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung = Alfred Wegener Institute for Polar and Marine Research = Institut Alfred-Wegener pour la recherche polaire et marine (AWI), Helmholtz-Gemeinschaft = Helmholtz Association, United Kingdom Met Office Exeter, Leibniz-Institut für Troposphärenforschung (TROPOS), Meteorologisches Institut Hamburg, Universität Hamburg (UHH), SPACE - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DLR Institut für Physik der Atmosphäre = DLR Institute of Atmospheric Physics (IPA), Deutsches Zentrum für Luft- und Raumfahrt Oberpfaffenhofen-Wessling (DLR), Abteilung für Partikelchemie Mainz, Max-Planck-Institut für Chemie (MPIC), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Institut für Physik der Atmosphäre Mainz (IPA), Johannes Gutenberg - Universität Mainz = Johannes Gutenberg University (JGU), Faculty of Aerospace Engineering Delft, Delft University of Technology (TU Delft), Laboratoire de Météorologie Physique (LaMP), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Max-Planck-Institut für Meteorologie (MPI-M), Max-Planck-Gesellschaft, Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Department of Meteorology Stockholm (MISU), Stockholm University, Bolin Centre for Climate Research, Extreme Environments Research Laboratory (EERL), Ecole Polytechnique Fédérale de Lausanne (EPFL), Meteorologisches Institut München (MIM), Ludwig Maximilian University Munich = Ludwig Maximilians Universität München (LMU), Deutscher Wetterdienst Hamburg (DWD), Scripps Institution of Oceanography (SIO - UC San Diego), University of California San Diego (UC San Diego), University of California (UC)-University of California (UC), Institut für Umweltphysik Bremen (IUP), Universität Bremen, Laboratory for Atmospheric and Space Physics Boulder (LASP), University of Colorado Boulder, Geophysical Institute Bergen (GFI / BiU), University of Bergen (UiB), Bjerknes Centre for Climate Research (BCCR), Department of Biological Sciences Bergen (BIO / UiB), University of Bergen (UiB)-University of Bergen (UiB), Finnish Meteorological Institute (FMI)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2024
Subjects:
Online Access:https://insu.hal.science/insu-04522598
https://insu.hal.science/insu-04522598/document
https://insu.hal.science/insu-04522598/file/egusphere-2024-783.pdf
https://doi.org/10.5194/egusphere-2024-783
Description
Summary:International audience The global warming is amplified in the Arctic. To collect data that help to constrain weather and climate models, which often do not realistically represent the enhanced Arctic warming, the HALO-(AC)³ aircraft campaign was conducted in March and April 2022 over the Norwegian and Greenland Seas, the Fram Strait, and the central Arctic Ocean. Observations were made over areas of open ocean, the marginal sea ice zone, and the central Arctic sea ice. Two low-flying and one long-range, high-altitude research aircraft have been employed. Whenever possible, the three aircraft were flown in collocated formation. The campaign focused on one specific challenge posed by the models: The reasonable representation of transformations of air masses during their meridional transport into (northward by moist and warm air intrusions, WAIs) and out of (southward via marine cold air outbreaks, CAOs) the Arctic. To observe the air mass transformations, a quasi-Lagrangian flight strategy using trajectory calculations was realized enabling to sample the moving air mass parcels twice along their trajectories. Eight distinct WAI and 12 CAO cases were probed extensively. From the quasi-Lagrangian measurements, we have derived the diabatic heating and moistening of the moving air masses during CAOs and WAIs, the development of cloud macrophysical and microphysical properties along the southward pathways of the air masses during CAOs, and the moisture budget of WAIs. As an example result, we have obtained typical values of the surface-driven diabatic heating between 1–3 K h-1 and of the near-surface moistening between 0.05–0.3 g kg-1 h-1 within the lowest about 0.5 km. From the observations of WAIs, a weak diabatic cooling of up to 0.4 K h-1 and a moisture loss of up to 0.1 g kg-1 h-1 from the ground to about 5 km altitude were derived. In addition, we discuss the frequency of occurrence of the different thermodynamic phases of Arctic low-level clouds, the interaction of Arctic cirrus with sea ice, water vapor, and ...