Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 (SO2, HCl, Particles) eruption cloud compared to in situ and satellite observations
International audience Volcanic eruptions impact climate through the injection of sulfur dioxide (SO2), which is oxidized to form sulfuric acid particles that enhance the stratospheric aerosol optical depth (SAOD). However, uncertainties remain in the atmospheric and climatic impacts due to limitati...
Main Authors: | , , , , , , , |
---|---|
Other Authors: | , , , , , , , , , , , , |
Format: | Conference Object |
Language: | English |
Published: |
HAL CCSD
2018
|
Subjects: | |
Online Access: | https://insu.hal.science/insu-03565545 |
id |
ftuniparissaclay:oai:HAL:insu-03565545v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Archives ouvertes de Paris-Saclay |
op_collection_id |
ftuniparissaclay |
language |
English |
topic |
Volcanology Atmospheric effects Volcano/climate interactions Extreme events Volcanic effects [SDU]Sciences of the Universe [physics] |
spellingShingle |
Volcanology Atmospheric effects Volcano/climate interactions Extreme events Volcanic effects [SDU]Sciences of the Universe [physics] Roberts, Tjarda, J Lurton, T. Jegou, Fabrice Berthet, Gwenaël Renard, Jean-Baptiste Clarisse, L. Schmidt, A. Brogniez, C. Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 (SO2, HCl, Particles) eruption cloud compared to in situ and satellite observations |
topic_facet |
Volcanology Atmospheric effects Volcano/climate interactions Extreme events Volcanic effects [SDU]Sciences of the Universe [physics] |
description |
International audience Volcanic eruptions impact climate through the injection of sulfur dioxide (SO2), which is oxidized to form sulfuric acid particles that enhance the stratospheric aerosol optical depth (SAOD). However, uncertainties remain in the atmospheric and climatic impacts due to limitations in model representations of particle microphysics and size, whilst biases have been identified in satellite estimates of post-eruption SAOD. In addition, some eruptions such as Sarychev Peak 2009 co-injected hydrogen chloride (HCl) alongside SO2, whose potential stratospheric chemistry impacts have not been investigated to date. Lurton et al. ACP (2018) present a study of the stratospheric SO2-particle-HCl processing and impacts from the Sarychev Peak eruption, using the CESM1-WACCM-CARMA sectional aerosol microphysics model (with no a priori assumption on particle size). The eruption injected 0.9 Tg of SO2 into the UTLS, enhancing the aerosol load in the Northern Hemisphere. The post-eruption volcanic SO2 is well reproduced by the model compared to IASI satellite data. Co-injection of 27 Gg HCl causes a lengthening of the SO2 lifetime and a slight delay in the formation of aerosols, and acts to enhance the destruction of stratospheric ozone and mono-nitrogen oxides (NOx) compared to the simulation with volcanic SO2 only. We highlight the need to account for volcanic halogen chemistry when simulating the chemistry-climate impacts of eruptions. The model-simulated evolution of effective radius reflects new particle formation followed by particle growth to reach up to 0.2 μm on zonal average. Comparison of the model-simulated particle number and size distributions to balloon-borne in situ stratospheric observations over Kiruna, Sweden (Aug-Sept 2009), and Laramie, USA, (June, Nov, 2009) show good agreement and quantitatively confirm the post-eruption particle enhancement. We show that the model-simulated SAOD is consistent with that derived from OSIRIS when both the saturation bias of OSIRIS and the fact that ... |
author2 |
Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E) Observatoire des Sciences de l'Univers en région Centre (OSUC) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales Paris (CNES) Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS-PSL) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) Faculté des Sciences Bruxelles (ULB) Université libre de Bruxelles (ULB) University of Cambridge UK (CAM) Laboratoire d’Optique Atmosphérique - UMR 8518 (LOA) Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS) |
format |
Conference Object |
author |
Roberts, Tjarda, J Lurton, T. Jegou, Fabrice Berthet, Gwenaël Renard, Jean-Baptiste Clarisse, L. Schmidt, A. Brogniez, C. |
author_facet |
Roberts, Tjarda, J Lurton, T. Jegou, Fabrice Berthet, Gwenaël Renard, Jean-Baptiste Clarisse, L. Schmidt, A. Brogniez, C. |
author_sort |
Roberts, Tjarda, J |
title |
Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 (SO2, HCl, Particles) eruption cloud compared to in situ and satellite observations |
title_short |
Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 (SO2, HCl, Particles) eruption cloud compared to in situ and satellite observations |
title_full |
Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 (SO2, HCl, Particles) eruption cloud compared to in situ and satellite observations |
title_fullStr |
Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 (SO2, HCl, Particles) eruption cloud compared to in situ and satellite observations |
title_full_unstemmed |
Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 (SO2, HCl, Particles) eruption cloud compared to in situ and satellite observations |
title_sort |
model simulations of the chemical and aerosol microphysical evolution of the sarychev peak 2009 (so2, hcl, particles) eruption cloud compared to in situ and satellite observations |
publisher |
HAL CCSD |
publishDate |
2018 |
url |
https://insu.hal.science/insu-03565545 |
op_coverage |
Washington, United States |
geographic |
Kiruna |
geographic_facet |
Kiruna |
genre |
Kiruna |
genre_facet |
Kiruna |
op_source |
American Geophysical Union Fall Meeting 2018 https://insu.hal.science/insu-03565545 American Geophysical Union Fall Meeting 2018, Dec 2018, Washington, United States |
op_relation |
insu-03565545 https://insu.hal.science/insu-03565545 BIBCODE: 2018AGUFMGC13E1065R |
_version_ |
1788062848465764352 |
spelling |
ftuniparissaclay:oai:HAL:insu-03565545v1 2024-01-14T10:08:26+01:00 Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 (SO2, HCl, Particles) eruption cloud compared to in situ and satellite observations Roberts, Tjarda, J Lurton, T. Jegou, Fabrice Berthet, Gwenaël Renard, Jean-Baptiste Clarisse, L. Schmidt, A. Brogniez, C. Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E) Observatoire des Sciences de l'Univers en région Centre (OSUC) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales Paris (CNES) Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS-PSL) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) Faculté des Sciences Bruxelles (ULB) Université libre de Bruxelles (ULB) University of Cambridge UK (CAM) Laboratoire d’Optique Atmosphérique - UMR 8518 (LOA) Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS) Washington, United States 2018-12-10 https://insu.hal.science/insu-03565545 en eng HAL CCSD insu-03565545 https://insu.hal.science/insu-03565545 BIBCODE: 2018AGUFMGC13E1065R American Geophysical Union Fall Meeting 2018 https://insu.hal.science/insu-03565545 American Geophysical Union Fall Meeting 2018, Dec 2018, Washington, United States Volcanology Atmospheric effects Volcano/climate interactions Extreme events Volcanic effects [SDU]Sciences of the Universe [physics] info:eu-repo/semantics/conferenceObject Conference papers 2018 ftuniparissaclay 2023-12-16T22:34:27Z International audience Volcanic eruptions impact climate through the injection of sulfur dioxide (SO2), which is oxidized to form sulfuric acid particles that enhance the stratospheric aerosol optical depth (SAOD). However, uncertainties remain in the atmospheric and climatic impacts due to limitations in model representations of particle microphysics and size, whilst biases have been identified in satellite estimates of post-eruption SAOD. In addition, some eruptions such as Sarychev Peak 2009 co-injected hydrogen chloride (HCl) alongside SO2, whose potential stratospheric chemistry impacts have not been investigated to date. Lurton et al. ACP (2018) present a study of the stratospheric SO2-particle-HCl processing and impacts from the Sarychev Peak eruption, using the CESM1-WACCM-CARMA sectional aerosol microphysics model (with no a priori assumption on particle size). The eruption injected 0.9 Tg of SO2 into the UTLS, enhancing the aerosol load in the Northern Hemisphere. The post-eruption volcanic SO2 is well reproduced by the model compared to IASI satellite data. Co-injection of 27 Gg HCl causes a lengthening of the SO2 lifetime and a slight delay in the formation of aerosols, and acts to enhance the destruction of stratospheric ozone and mono-nitrogen oxides (NOx) compared to the simulation with volcanic SO2 only. We highlight the need to account for volcanic halogen chemistry when simulating the chemistry-climate impacts of eruptions. The model-simulated evolution of effective radius reflects new particle formation followed by particle growth to reach up to 0.2 μm on zonal average. Comparison of the model-simulated particle number and size distributions to balloon-borne in situ stratospheric observations over Kiruna, Sweden (Aug-Sept 2009), and Laramie, USA, (June, Nov, 2009) show good agreement and quantitatively confirm the post-eruption particle enhancement. We show that the model-simulated SAOD is consistent with that derived from OSIRIS when both the saturation bias of OSIRIS and the fact that ... Conference Object Kiruna Archives ouvertes de Paris-Saclay Kiruna |