Stratospheric ozone response to sulfate aerosol and solar dimming climate interventions based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) simulations

International audience This study assesses the impacts of stratospheric aerosol intervention (SAI) and solar dimming on stratospheric ozone based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) experiments, called G6sulfur and G6solar. For G6sulfur, an enhanced stratospheric sulfate...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Tilmes, Simone, Visioni, Daniele, Jones, Andy, Haywood, James, Séférian, Roland, Nabat, Pierre, Boucher, Olivier, Monica Bednarz, Ewa, Niemeier, Ulrike
Other Authors: National Center for Atmospheric Research Boulder (NCAR), Cornell University New York, Met Office Hadley Centre (MOHC), United Kingdom Met Office Exeter, Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS), Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Sorbonne Université (SU), Max Planck Institute for Meteorology (MPI-M), Max-Planck-Gesellschaft, ANR-17-EURE-0006,IPSL-CGS,IPSL Climate graduate school(2017), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://hal.science/hal-03640125
https://hal.science/hal-03640125v1/document
https://hal.science/hal-03640125v1/file/acp-22-4557-2022.pdf
https://doi.org/10.5194/acp-22-4557-2022
id ftuniparissaclay:oai:HAL:hal-03640125v1
record_format openpolar
institution Open Polar
collection Archives ouvertes de Paris-Saclay
op_collection_id ftuniparissaclay
language English
topic [SDE]Environmental Sciences
spellingShingle [SDE]Environmental Sciences
Tilmes, Simone
Visioni, Daniele
Jones, Andy
Haywood, James
Séférian, Roland
Nabat, Pierre
Boucher, Olivier
Monica Bednarz, Ewa
Niemeier, Ulrike
Stratospheric ozone response to sulfate aerosol and solar dimming climate interventions based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) simulations
topic_facet [SDE]Environmental Sciences
description International audience This study assesses the impacts of stratospheric aerosol intervention (SAI) and solar dimming on stratospheric ozone based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) experiments, called G6sulfur and G6solar. For G6sulfur, an enhanced stratospheric sulfate aerosol burden reflects some of the incoming solar radiation back into space to cool the surface climate, while for G6solar, the reduction in the global solar constant in the model achieves the same goal. Both experiments use the high emissions scenario of SSP5-8.5 as the baseline experiment and define surface temperature from the medium emission scenario of SSP2-4.5 as the target. In total, six Earth system models (ESMs) performed these experiments, and three out of the six models include interactive stratospheric chemistry. The increase in absorbing sulfate aerosols in the stratosphere results in a heating of the lower tropical stratospheric temperatures by between 5 to 13 K for the six different ESMs, leading to changes in stratospheric transport, water vapor, and other related changes. The increase in the aerosol burden also increases aerosol surface area density, which is important for heterogeneous chemical reactions. The resulting changes in the springtime Antarctic ozone between the G6sulfur and SSP5-8.5, based on the three models with interactive chemistry, include an initial reduction in total column ozone (TCO) of 10 DU (ranging between 0-30 DU for the three models) and up to 20 DU (between 10-40 DU) by the end of the century. The relatively small reduction in TCO for the multi-model mean in the first 2 decades results from variations in the required sulfur injections in the models and differences in the complexity of the chemistry schemes. In contrast, in the Northern Hemisphere (NH) high latitudes, no significant changes can be identified due to the large natural variability in the models, with little change in TCO by the end of the century. However, all three models with interactive chemistry ...
author2 National Center for Atmospheric Research Boulder (NCAR)
Cornell University New York
Met Office Hadley Centre (MOHC)
United Kingdom Met Office Exeter
Centre national de recherches météorologiques (CNRM)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
Institut Pierre-Simon-Laplace (IPSL (FR_636))
École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)
Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Sorbonne Université (SU)
Max Planck Institute for Meteorology (MPI-M)
Max-Planck-Gesellschaft
ANR-17-EURE-0006,IPSL-CGS,IPSL Climate graduate school(2017)
ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011)
format Article in Journal/Newspaper
author Tilmes, Simone
Visioni, Daniele
Jones, Andy
Haywood, James
Séférian, Roland
Nabat, Pierre
Boucher, Olivier
Monica Bednarz, Ewa
Niemeier, Ulrike
author_facet Tilmes, Simone
Visioni, Daniele
Jones, Andy
Haywood, James
Séférian, Roland
Nabat, Pierre
Boucher, Olivier
Monica Bednarz, Ewa
Niemeier, Ulrike
author_sort Tilmes, Simone
title Stratospheric ozone response to sulfate aerosol and solar dimming climate interventions based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) simulations
title_short Stratospheric ozone response to sulfate aerosol and solar dimming climate interventions based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) simulations
title_full Stratospheric ozone response to sulfate aerosol and solar dimming climate interventions based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) simulations
title_fullStr Stratospheric ozone response to sulfate aerosol and solar dimming climate interventions based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) simulations
title_full_unstemmed Stratospheric ozone response to sulfate aerosol and solar dimming climate interventions based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) simulations
title_sort stratospheric ozone response to sulfate aerosol and solar dimming climate interventions based on the g6 geoengineering model intercomparison project (geomip) simulations
publisher HAL CCSD
publishDate 2022
url https://hal.science/hal-03640125
https://hal.science/hal-03640125v1/document
https://hal.science/hal-03640125v1/file/acp-22-4557-2022.pdf
https://doi.org/10.5194/acp-22-4557-2022
geographic Antarctic
geographic_facet Antarctic
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_source ISSN: 1680-7316
EISSN: 1680-7324
Atmospheric Chemistry and Physics
https://hal.science/hal-03640125
Atmospheric Chemistry and Physics, 2022, ⟨10.5194/acp-22-4557-2022⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-22-4557-2022
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/acp-22-4557-2022
container_title Atmospheric Chemistry and Physics
container_volume 22
container_issue 7
container_start_page 4557
op_container_end_page 4579
_version_ 1812808381707059200
spelling ftuniparissaclay:oai:HAL:hal-03640125v1 2024-10-13T14:03:24+00:00 Stratospheric ozone response to sulfate aerosol and solar dimming climate interventions based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) simulations Tilmes, Simone Visioni, Daniele Jones, Andy Haywood, James Séférian, Roland Nabat, Pierre Boucher, Olivier Monica Bednarz, Ewa Niemeier, Ulrike National Center for Atmospheric Research Boulder (NCAR) Cornell University New York Met Office Hadley Centre (MOHC) United Kingdom Met Office Exeter Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) Sorbonne Université (SU) Max Planck Institute for Meteorology (MPI-M) Max-Planck-Gesellschaft ANR-17-EURE-0006,IPSL-CGS,IPSL Climate graduate school(2017) ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011) 2022-04-08 https://hal.science/hal-03640125 https://hal.science/hal-03640125v1/document https://hal.science/hal-03640125v1/file/acp-22-4557-2022.pdf https://doi.org/10.5194/acp-22-4557-2022 en eng HAL CCSD European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-22-4557-2022 info:eu-repo/semantics/OpenAccess ISSN: 1680-7316 EISSN: 1680-7324 Atmospheric Chemistry and Physics https://hal.science/hal-03640125 Atmospheric Chemistry and Physics, 2022, ⟨10.5194/acp-22-4557-2022⟩ [SDE]Environmental Sciences info:eu-repo/semantics/article Journal articles 2022 ftuniparissaclay https://doi.org/10.5194/acp-22-4557-2022 2024-10-03T23:59:12Z International audience This study assesses the impacts of stratospheric aerosol intervention (SAI) and solar dimming on stratospheric ozone based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) experiments, called G6sulfur and G6solar. For G6sulfur, an enhanced stratospheric sulfate aerosol burden reflects some of the incoming solar radiation back into space to cool the surface climate, while for G6solar, the reduction in the global solar constant in the model achieves the same goal. Both experiments use the high emissions scenario of SSP5-8.5 as the baseline experiment and define surface temperature from the medium emission scenario of SSP2-4.5 as the target. In total, six Earth system models (ESMs) performed these experiments, and three out of the six models include interactive stratospheric chemistry. The increase in absorbing sulfate aerosols in the stratosphere results in a heating of the lower tropical stratospheric temperatures by between 5 to 13 K for the six different ESMs, leading to changes in stratospheric transport, water vapor, and other related changes. The increase in the aerosol burden also increases aerosol surface area density, which is important for heterogeneous chemical reactions. The resulting changes in the springtime Antarctic ozone between the G6sulfur and SSP5-8.5, based on the three models with interactive chemistry, include an initial reduction in total column ozone (TCO) of 10 DU (ranging between 0-30 DU for the three models) and up to 20 DU (between 10-40 DU) by the end of the century. The relatively small reduction in TCO for the multi-model mean in the first 2 decades results from variations in the required sulfur injections in the models and differences in the complexity of the chemistry schemes. In contrast, in the Northern Hemisphere (NH) high latitudes, no significant changes can be identified due to the large natural variability in the models, with little change in TCO by the end of the century. However, all three models with interactive chemistry ... Article in Journal/Newspaper Antarc* Antarctic Archives ouvertes de Paris-Saclay Antarctic Atmospheric Chemistry and Physics 22 7 4557 4579