Impact of Southern Ocean surface conditions on deep ocean circulation during the LGM: a model analysis
International audience Changes in water mass distribution are considered to be a significant contributor to the atmospheric CO2 concentration drop to around 186 ppm recorded during the Last Glacial Maximum (LGM). Yet simulating a glacial Atlantic Meridional Overturning Circulation (AMOC) in agreemen...
Published in: | Climate of the Past |
---|---|
Main Authors: | , , , , , |
Other Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2021
|
Subjects: | |
Online Access: | https://hal.science/hal-03252944 https://hal.science/hal-03252944/document https://hal.science/hal-03252944/file/cp-17-1139-2021.pdf https://doi.org/10.5194/cp-17-1139-2021 |
id |
ftuniparissaclay:oai:HAL:hal-03252944v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Archives ouvertes de Paris-Saclay |
op_collection_id |
ftuniparissaclay |
language |
English |
topic |
Last Glacial Maximum Southern Ocean iLOVECLIM model [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology |
spellingShingle |
Last Glacial Maximum Southern Ocean iLOVECLIM model [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology Lhardy, Fanny Bouttes, Nathaëlle Roche, Didier M. Crosta, Xavier Waelbroeck, Claire Paillard, Didier Impact of Southern Ocean surface conditions on deep ocean circulation during the LGM: a model analysis |
topic_facet |
Last Glacial Maximum Southern Ocean iLOVECLIM model [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology |
description |
International audience Changes in water mass distribution are considered to be a significant contributor to the atmospheric CO2 concentration drop to around 186 ppm recorded during the Last Glacial Maximum (LGM). Yet simulating a glacial Atlantic Meridional Overturning Circulation (AMOC) in agreement with paleotracer data remains a challenge, with most models from previous Paleoclimate Modelling Intercomparison Project (PMIP) phases showing a tendency to simulate a strong and deep North Atlantic Deep Water (NADW) instead of the shoaling inferred from proxy records of water mass distribution. Conversely, the simulated Antarctic Bottom Water (AABW) is often reduced compared to its pre-industrial volume, and the Atlantic Ocean stratification is underestimated with respect to paleoproxy data. Inadequate representation of surface conditions, driving deep convection around Antarctica, may explain inaccurately simulated bottom water properties in the Southern Ocean. We investigate here the impact of a range of surface conditions in the Southern Ocean in the iLOVECLIM model using nine simulations obtained with different LGM boundary conditions associated with the ice sheet reconstruction (e.g., changes of elevation, bathymetry, and land–sea mask) and/or modeling choices related to sea-ice export, formation of salty brines, and freshwater input. Based on model–data comparison of sea-surface temperatures and sea ice, we find that only simulations with a cold Southern Ocean and a quite extensive sea-ice cover show an improved agreement with proxy records of sea ice, despite systematic model biases in the seasonal and regional patterns. We then show that the only simulation which does not display a much deeper NADW is obtained by parameterizing the sinking of brines along Antarctica, a modeling choice reducing the open-ocean convection in the Southern Ocean. These results highlight the importance of the representation of convection processes, which have a large impact on the water mass properties, while the choice of ... |
author2 |
Modélisation du climat (CLIM) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Vrije Universiteit Amsterdam Amsterdam (VU) Environnements et Paléoenvironnements OCéaniques (EPOC) Observatoire aquitain des sciences de l'univers (OASU) Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS) Processus et interactions de fine échelle océanique (PROTEO) Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN) Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) French National program LEFE (Les Enveloppes Fluides et l'Environnement) project GLACOCEAN European Project: 339108,EC:FP7:ERC,ERC-2013-ADG,ACCLIMATE(2014) |
format |
Article in Journal/Newspaper |
author |
Lhardy, Fanny Bouttes, Nathaëlle Roche, Didier M. Crosta, Xavier Waelbroeck, Claire Paillard, Didier |
author_facet |
Lhardy, Fanny Bouttes, Nathaëlle Roche, Didier M. Crosta, Xavier Waelbroeck, Claire Paillard, Didier |
author_sort |
Lhardy, Fanny |
title |
Impact of Southern Ocean surface conditions on deep ocean circulation during the LGM: a model analysis |
title_short |
Impact of Southern Ocean surface conditions on deep ocean circulation during the LGM: a model analysis |
title_full |
Impact of Southern Ocean surface conditions on deep ocean circulation during the LGM: a model analysis |
title_fullStr |
Impact of Southern Ocean surface conditions on deep ocean circulation during the LGM: a model analysis |
title_full_unstemmed |
Impact of Southern Ocean surface conditions on deep ocean circulation during the LGM: a model analysis |
title_sort |
impact of southern ocean surface conditions on deep ocean circulation during the lgm: a model analysis |
publisher |
HAL CCSD |
publishDate |
2021 |
url |
https://hal.science/hal-03252944 https://hal.science/hal-03252944/document https://hal.science/hal-03252944/file/cp-17-1139-2021.pdf https://doi.org/10.5194/cp-17-1139-2021 |
geographic |
Antarctic Southern Ocean |
geographic_facet |
Antarctic Southern Ocean |
genre |
Antarc* Antarctic Antarctica Ice Sheet NADW North Atlantic Deep Water North Atlantic Sea ice Southern Ocean |
genre_facet |
Antarc* Antarctic Antarctica Ice Sheet NADW North Atlantic Deep Water North Atlantic Sea ice Southern Ocean |
op_source |
ISSN: 1814-9324 EISSN: 1814-9332 Climate of the Past https://hal.science/hal-03252944 Climate of the Past, 2021, 17 (3), pp.1139-1159. ⟨10.5194/cp-17-1139-2021⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.5194/cp-17-1139-2021 info:eu-repo/grantAgreement/EC/FP7/339108/EU/Elucidating the Causes and Effects of Atlantic Circulation Changes through Model-Data Integration/ACCLIMATE hal-03252944 https://hal.science/hal-03252944 https://hal.science/hal-03252944/document https://hal.science/hal-03252944/file/cp-17-1139-2021.pdf doi:10.5194/cp-17-1139-2021 WOS: 000661256000001 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.5194/cp-17-1139-2021 |
container_title |
Climate of the Past |
container_volume |
17 |
container_issue |
3 |
container_start_page |
1139 |
op_container_end_page |
1159 |
_version_ |
1812175082352541696 |
spelling |
ftuniparissaclay:oai:HAL:hal-03252944v1 2024-10-06T13:42:21+00:00 Impact of Southern Ocean surface conditions on deep ocean circulation during the LGM: a model analysis Lhardy, Fanny Bouttes, Nathaëlle Roche, Didier M. Crosta, Xavier Waelbroeck, Claire Paillard, Didier Modélisation du climat (CLIM) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Vrije Universiteit Amsterdam Amsterdam (VU) Environnements et Paléoenvironnements OCéaniques (EPOC) Observatoire aquitain des sciences de l'univers (OASU) Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS) Processus et interactions de fine échelle océanique (PROTEO) Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN) Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) French National program LEFE (Les Enveloppes Fluides et l'Environnement) project GLACOCEAN European Project: 339108,EC:FP7:ERC,ERC-2013-ADG,ACCLIMATE(2014) 2021 https://hal.science/hal-03252944 https://hal.science/hal-03252944/document https://hal.science/hal-03252944/file/cp-17-1139-2021.pdf https://doi.org/10.5194/cp-17-1139-2021 en eng HAL CCSD European Geosciences Union (EGU) info:eu-repo/semantics/altIdentifier/doi/10.5194/cp-17-1139-2021 info:eu-repo/grantAgreement/EC/FP7/339108/EU/Elucidating the Causes and Effects of Atlantic Circulation Changes through Model-Data Integration/ACCLIMATE hal-03252944 https://hal.science/hal-03252944 https://hal.science/hal-03252944/document https://hal.science/hal-03252944/file/cp-17-1139-2021.pdf doi:10.5194/cp-17-1139-2021 WOS: 000661256000001 info:eu-repo/semantics/OpenAccess ISSN: 1814-9324 EISSN: 1814-9332 Climate of the Past https://hal.science/hal-03252944 Climate of the Past, 2021, 17 (3), pp.1139-1159. ⟨10.5194/cp-17-1139-2021⟩ Last Glacial Maximum Southern Ocean iLOVECLIM model [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology info:eu-repo/semantics/article Journal articles 2021 ftuniparissaclay https://doi.org/10.5194/cp-17-1139-2021 2024-09-06T00:30:30Z International audience Changes in water mass distribution are considered to be a significant contributor to the atmospheric CO2 concentration drop to around 186 ppm recorded during the Last Glacial Maximum (LGM). Yet simulating a glacial Atlantic Meridional Overturning Circulation (AMOC) in agreement with paleotracer data remains a challenge, with most models from previous Paleoclimate Modelling Intercomparison Project (PMIP) phases showing a tendency to simulate a strong and deep North Atlantic Deep Water (NADW) instead of the shoaling inferred from proxy records of water mass distribution. Conversely, the simulated Antarctic Bottom Water (AABW) is often reduced compared to its pre-industrial volume, and the Atlantic Ocean stratification is underestimated with respect to paleoproxy data. Inadequate representation of surface conditions, driving deep convection around Antarctica, may explain inaccurately simulated bottom water properties in the Southern Ocean. We investigate here the impact of a range of surface conditions in the Southern Ocean in the iLOVECLIM model using nine simulations obtained with different LGM boundary conditions associated with the ice sheet reconstruction (e.g., changes of elevation, bathymetry, and land–sea mask) and/or modeling choices related to sea-ice export, formation of salty brines, and freshwater input. Based on model–data comparison of sea-surface temperatures and sea ice, we find that only simulations with a cold Southern Ocean and a quite extensive sea-ice cover show an improved agreement with proxy records of sea ice, despite systematic model biases in the seasonal and regional patterns. We then show that the only simulation which does not display a much deeper NADW is obtained by parameterizing the sinking of brines along Antarctica, a modeling choice reducing the open-ocean convection in the Southern Ocean. These results highlight the importance of the representation of convection processes, which have a large impact on the water mass properties, while the choice of ... Article in Journal/Newspaper Antarc* Antarctic Antarctica Ice Sheet NADW North Atlantic Deep Water North Atlantic Sea ice Southern Ocean Archives ouvertes de Paris-Saclay Antarctic Southern Ocean Climate of the Past 17 3 1139 1159 |