Mid-level convection in a warm conveyor belt accelerates the jet stream

International audience Jet streams and potential vorticity (PV) gradients along upper-level ridges and troughs form a waveguide that governs midlatitude dynamics. Warm conveyor belt (WCB) outflows often inject low-PV air into ridges and their representation is seen as a source of uncertainty for dow...

Full description

Bibliographic Details
Published in:Weather and Climate Dynamics
Main Authors: Blanchard, Nicolas, Pantillon, Florian, Chaboureau, Jean-Pierre, Delanoë, Julien
Other Authors: Laboratoire d'aérologie (LAERO), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS), SPACE - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2021
Subjects:
Online Access:https://hal.science/hal-02999222
https://hal.science/hal-02999222v2/document
https://hal.science/hal-02999222v2/file/wcd-2-37-2021.pdf
https://doi.org/10.5194/wcd-2-37-2021
id ftuniparissaclay:oai:HAL:hal-02999222v2
record_format openpolar
institution Open Polar
collection Archives ouvertes de Paris-Saclay
op_collection_id ftuniparissaclay
language English
topic [SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
spellingShingle [SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
Blanchard, Nicolas
Pantillon, Florian
Chaboureau, Jean-Pierre
Delanoë, Julien
Mid-level convection in a warm conveyor belt accelerates the jet stream
topic_facet [SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
description International audience Jet streams and potential vorticity (PV) gradients along upper-level ridges and troughs form a waveguide that governs midlatitude dynamics. Warm conveyor belt (WCB) outflows often inject low-PV air into ridges and their representation is seen as a source of uncertainty for downstream forecasts. Recent studies have highlighted the presence of mesoscale structures of negative PV in WCBs, the impact of which on large-scale dynamics is still debated. Here, fine-scale observations of cloud and wind structures acquired with airborne Doppler radar and dropsondes provide rare information on the WCB outflow of the Stalactite cyclone and the associated upper-level ridge on 2 October 2016 during the North Atlantic Waveguide and Downstream Impact Experiment. The observations reveal a complex tropopause structure with a high PV tongue separating the northwestern edge of the ridge in two parts, each with cirrus-type clouds and accompanied by a jet stream core, and bounded by a tropopause fold. A reference, convection-permitting simulation with full physics reproduces well the observed mesoscale structures and reveals the presence of elongated negative PV bands along the eastern jet stream core. In contrast, a sensitivity experiment with heat exchanges due to cloud processes cut off shows lower cloud tops, weaker jet stream cores, a ridge less extended westward, and the absence of negative PV bands. A Lagrangian analysis based on online trajectories shows that the anticyclonic branch of the WCB outflow feeds the eastern jet stream core in the reference simulation, while it is absent in the sensitivity experiment. The anticyclonic ascents and negative PV bands originate from the same region near the cyclone's bent-back front. The most rapid ascents coincide with mid-level convective cells identified by clustering analysis, which are located in a region of conditional instability below the jet stream core and above a low-level jet. Horizontal PV dipoles are found around these cells and with the negative ...
author2 Laboratoire d'aérologie (LAERO)
Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
SPACE - LATMOS
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Blanchard, Nicolas
Pantillon, Florian
Chaboureau, Jean-Pierre
Delanoë, Julien
author_facet Blanchard, Nicolas
Pantillon, Florian
Chaboureau, Jean-Pierre
Delanoë, Julien
author_sort Blanchard, Nicolas
title Mid-level convection in a warm conveyor belt accelerates the jet stream
title_short Mid-level convection in a warm conveyor belt accelerates the jet stream
title_full Mid-level convection in a warm conveyor belt accelerates the jet stream
title_fullStr Mid-level convection in a warm conveyor belt accelerates the jet stream
title_full_unstemmed Mid-level convection in a warm conveyor belt accelerates the jet stream
title_sort mid-level convection in a warm conveyor belt accelerates the jet stream
publisher HAL CCSD
publishDate 2021
url https://hal.science/hal-02999222
https://hal.science/hal-02999222v2/document
https://hal.science/hal-02999222v2/file/wcd-2-37-2021.pdf
https://doi.org/10.5194/wcd-2-37-2021
genre North Atlantic
genre_facet North Atlantic
op_source ISSN: 2698-4016
Weather and Climate Dynamics
https://hal.science/hal-02999222
Weather and Climate Dynamics, 2021, 2 (1), pp.37-53. ⟨10.5194/wcd-2-37-2021⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/wcd-2-37-2021
hal-02999222
https://hal.science/hal-02999222
https://hal.science/hal-02999222v2/document
https://hal.science/hal-02999222v2/file/wcd-2-37-2021.pdf
doi:10.5194/wcd-2-37-2021
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/wcd-2-37-2021
container_title Weather and Climate Dynamics
container_volume 2
container_issue 1
container_start_page 37
op_container_end_page 53
_version_ 1786197262828830720
spelling ftuniparissaclay:oai:HAL:hal-02999222v2 2023-12-24T10:23:21+01:00 Mid-level convection in a warm conveyor belt accelerates the jet stream Blanchard, Nicolas Pantillon, Florian Chaboureau, Jean-Pierre Delanoë, Julien Laboratoire d'aérologie (LAERO) Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) SPACE - LATMOS Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) 2021 https://hal.science/hal-02999222 https://hal.science/hal-02999222v2/document https://hal.science/hal-02999222v2/file/wcd-2-37-2021.pdf https://doi.org/10.5194/wcd-2-37-2021 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/wcd-2-37-2021 hal-02999222 https://hal.science/hal-02999222 https://hal.science/hal-02999222v2/document https://hal.science/hal-02999222v2/file/wcd-2-37-2021.pdf doi:10.5194/wcd-2-37-2021 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 2698-4016 Weather and Climate Dynamics https://hal.science/hal-02999222 Weather and Climate Dynamics, 2021, 2 (1), pp.37-53. ⟨10.5194/wcd-2-37-2021⟩ [SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] info:eu-repo/semantics/article Journal articles 2021 ftuniparissaclay https://doi.org/10.5194/wcd-2-37-2021 2023-11-25T22:36:30Z International audience Jet streams and potential vorticity (PV) gradients along upper-level ridges and troughs form a waveguide that governs midlatitude dynamics. Warm conveyor belt (WCB) outflows often inject low-PV air into ridges and their representation is seen as a source of uncertainty for downstream forecasts. Recent studies have highlighted the presence of mesoscale structures of negative PV in WCBs, the impact of which on large-scale dynamics is still debated. Here, fine-scale observations of cloud and wind structures acquired with airborne Doppler radar and dropsondes provide rare information on the WCB outflow of the Stalactite cyclone and the associated upper-level ridge on 2 October 2016 during the North Atlantic Waveguide and Downstream Impact Experiment. The observations reveal a complex tropopause structure with a high PV tongue separating the northwestern edge of the ridge in two parts, each with cirrus-type clouds and accompanied by a jet stream core, and bounded by a tropopause fold. A reference, convection-permitting simulation with full physics reproduces well the observed mesoscale structures and reveals the presence of elongated negative PV bands along the eastern jet stream core. In contrast, a sensitivity experiment with heat exchanges due to cloud processes cut off shows lower cloud tops, weaker jet stream cores, a ridge less extended westward, and the absence of negative PV bands. A Lagrangian analysis based on online trajectories shows that the anticyclonic branch of the WCB outflow feeds the eastern jet stream core in the reference simulation, while it is absent in the sensitivity experiment. The anticyclonic ascents and negative PV bands originate from the same region near the cyclone's bent-back front. The most rapid ascents coincide with mid-level convective cells identified by clustering analysis, which are located in a region of conditional instability below the jet stream core and above a low-level jet. Horizontal PV dipoles are found around these cells and with the negative ... Article in Journal/Newspaper North Atlantic Archives ouvertes de Paris-Saclay Weather and Climate Dynamics 2 1 37 53