Tracing freshwater anomalies through the air‐land‐ocean system: A case study from the Mackenzie river basin and the Beaufort Gyre

Mackenzie River discharge was at a record low in water year (WY) 1995 (October 1994 to September 1995), was near average in WY 1996, and was at a record high in WY 1997. The record high discharge in WY 1997, with above average flow each month, was followed by a record high flow in May 1998, then a s...

Full description

Bibliographic Details
Published in:Atmosphere-Ocean
Main Authors: Rawlins, Michael A., Steele, Michael, Serreze, Mark C., Vorosmarty, Charles J., Ermold, Wendy, Lammers, Richard B., McDonald, Kyle C., Pavelsky, Tamlin M., Shiklomanov, Alexander I., Zhang, Jinlun
Format: Text
Language:unknown
Published: University of New Hampshire Scholars' Repository 2008
Subjects:
Online Access:https://scholars.unh.edu/faculty_pubs/132
https://doi.org/10.3137/OC301.2009
Description
Summary:Mackenzie River discharge was at a record low in water year (WY) 1995 (October 1994 to September 1995), was near average in WY 1996, and was at a record high in WY 1997. The record high discharge in WY 1997, with above average flow each month, was followed by a record high flow in May 1998, then a sharp decline. Through diagnosing these changing flows and their expression in the Beaufort Sea via synthesis of observations and model output, this study provides insight into the nature of the Arctic's freshwater system. The low discharge in WY 1995 manifests negative anomalies in P‐E and precipitation, recycled summer precipitation, and dry surface conditions immediately prior to the water year. The complex hydrograph for WY 1996 reflects a combination of spring soil moisture recharge, buffering by rising lake levels, positive P‐E anomalies in summer, and a massive release of water held in storage by Bennett Dam. The record high discharge in WY 1997 manifests the dual effects of reduced buffering by lakes and positive P‐E anomalies for most of the year. With reduced buffering, only modest P‐E the following spring led to a record discharge in May 1998. As simulated with a coupled ice‐ocean model, the record low discharge in WY 1995 contributed to a negative freshwater anomaly on the Mackenzie shelf lasting throughout the winter of 1995/96. High discharge from July–October 1996 contributed approximately 20% to a positive freshwater anomaly forming in the Beaufort Sea in the autumn of that year. The remainder was associated with reduced autumn/winter ice growth, strong ice melt the previous summer, and positive P‐E anomalies over the ocean itself. Starting in autumn 1997 and throughout 1998, the upper ocean became more saline owing to sea‐ice growth.