Constraining models for C Exchange in Permafrost and Peatland Soils: Soil radiocarbon and its utility for C turnover

Permafrost and peatland systems generally accumulate carbon (C ) upward as the carbon also turns over. This turnover-accumulation paradigm sets these systems apart from other soils partially because C pools and their average ages have a vertical rather than mixed structure. Past rates of C exchange...

Full description

Bibliographic Details
Main Authors: Harden, Jennifer, Fuller, C, Frolking, Steve, Koven, C D, Manies, Kristen L, McGeehin, J P, O'Donnell, J
Format: Text
Language:unknown
Published: University of New Hampshire Scholars' Repository 2011
Subjects:
Online Access:https://scholars.unh.edu/earthsci_facpub/407
http://abstractsearch.agu.org/meetings/2011/FM/B24A-07.html
id ftuninhampshire:oai:scholars.unh.edu:earthsci_facpub-1406
record_format openpolar
spelling ftuninhampshire:oai:scholars.unh.edu:earthsci_facpub-1406 2023-05-15T13:03:32+02:00 Constraining models for C Exchange in Permafrost and Peatland Soils: Soil radiocarbon and its utility for C turnover Harden, Jennifer Fuller, C Frolking, Steve Koven, C D Manies, Kristen L McGeehin, J P O'Donnell, J 2011-12-01T08:00:00Z https://scholars.unh.edu/earthsci_facpub/407 http://abstractsearch.agu.org/meetings/2011/FM/B24A-07.html unknown University of New Hampshire Scholars' Repository https://scholars.unh.edu/earthsci_facpub/407 http://abstractsearch.agu.org/meetings/2011/FM/B24A-07.html Earth Sciences Scholarship text 2011 ftuninhampshire 2023-01-30T21:35:11Z Permafrost and peatland systems generally accumulate carbon (C ) upward as the carbon also turns over. This turnover-accumulation paradigm sets these systems apart from other soils partially because C pools and their average ages have a vertical rather than mixed structure. Past rates of C exchange in permafrost and peatland soils are more common than turnover models and while helpful, such rates are inherently biased toward events and periods in which there was a net positive exchange onto land and for periods or places in which C is preserved. For example we assume that slow rates of peat accumulation correspond to periods when net losses or smaller gains persisted. Preserved char material holds hope for indicating periods of net C loss via combustion, but periods of enhanced decomposition have few, if any, direct and datable indicators that link C loss to past climate events at spatial scales that are meaningful to soil-plant-atmosphere studies. Models greatly expand the opportunity for linking net C exchange to climate conditions of the past, but model testing by peat, macrofossil, or C data is limited conceptually and quantitatively by not addressing the entire soil C pool and its dynamic nature. We approach this problem with hypothesis testing. For hypothesis formulation, we turned to multi-year modern flux measurements to look for triggers of C loss or lower accumulation rates (via net ecosystem carbon balance (NECB) or net ecosystem production) in periods or places in which (1) water tables are more variable or are drawn down to aerate more peat, and (2) active layer thickness is deeper, resulting in greater ratio of thawed: frozen substrates. Keeping in mind that significant or persistent changes in seasonal factors could trigger (1) or (2), we tested for times or areas in which NECB was reduced. For hypothesis testing, we then used two approaches. The first approach compared total inventories of bomb-enriched Cs-137, unsupported Pb-210, and bomb enriched C-14 and used controls sites for establishing ... Text Active layer thickness permafrost University of New Hampshire: Scholars Repository
institution Open Polar
collection University of New Hampshire: Scholars Repository
op_collection_id ftuninhampshire
language unknown
description Permafrost and peatland systems generally accumulate carbon (C ) upward as the carbon also turns over. This turnover-accumulation paradigm sets these systems apart from other soils partially because C pools and their average ages have a vertical rather than mixed structure. Past rates of C exchange in permafrost and peatland soils are more common than turnover models and while helpful, such rates are inherently biased toward events and periods in which there was a net positive exchange onto land and for periods or places in which C is preserved. For example we assume that slow rates of peat accumulation correspond to periods when net losses or smaller gains persisted. Preserved char material holds hope for indicating periods of net C loss via combustion, but periods of enhanced decomposition have few, if any, direct and datable indicators that link C loss to past climate events at spatial scales that are meaningful to soil-plant-atmosphere studies. Models greatly expand the opportunity for linking net C exchange to climate conditions of the past, but model testing by peat, macrofossil, or C data is limited conceptually and quantitatively by not addressing the entire soil C pool and its dynamic nature. We approach this problem with hypothesis testing. For hypothesis formulation, we turned to multi-year modern flux measurements to look for triggers of C loss or lower accumulation rates (via net ecosystem carbon balance (NECB) or net ecosystem production) in periods or places in which (1) water tables are more variable or are drawn down to aerate more peat, and (2) active layer thickness is deeper, resulting in greater ratio of thawed: frozen substrates. Keeping in mind that significant or persistent changes in seasonal factors could trigger (1) or (2), we tested for times or areas in which NECB was reduced. For hypothesis testing, we then used two approaches. The first approach compared total inventories of bomb-enriched Cs-137, unsupported Pb-210, and bomb enriched C-14 and used controls sites for establishing ...
format Text
author Harden, Jennifer
Fuller, C
Frolking, Steve
Koven, C D
Manies, Kristen L
McGeehin, J P
O'Donnell, J
spellingShingle Harden, Jennifer
Fuller, C
Frolking, Steve
Koven, C D
Manies, Kristen L
McGeehin, J P
O'Donnell, J
Constraining models for C Exchange in Permafrost and Peatland Soils: Soil radiocarbon and its utility for C turnover
author_facet Harden, Jennifer
Fuller, C
Frolking, Steve
Koven, C D
Manies, Kristen L
McGeehin, J P
O'Donnell, J
author_sort Harden, Jennifer
title Constraining models for C Exchange in Permafrost and Peatland Soils: Soil radiocarbon and its utility for C turnover
title_short Constraining models for C Exchange in Permafrost and Peatland Soils: Soil radiocarbon and its utility for C turnover
title_full Constraining models for C Exchange in Permafrost and Peatland Soils: Soil radiocarbon and its utility for C turnover
title_fullStr Constraining models for C Exchange in Permafrost and Peatland Soils: Soil radiocarbon and its utility for C turnover
title_full_unstemmed Constraining models for C Exchange in Permafrost and Peatland Soils: Soil radiocarbon and its utility for C turnover
title_sort constraining models for c exchange in permafrost and peatland soils: soil radiocarbon and its utility for c turnover
publisher University of New Hampshire Scholars' Repository
publishDate 2011
url https://scholars.unh.edu/earthsci_facpub/407
http://abstractsearch.agu.org/meetings/2011/FM/B24A-07.html
genre Active layer thickness
permafrost
genre_facet Active layer thickness
permafrost
op_source Earth Sciences Scholarship
op_relation https://scholars.unh.edu/earthsci_facpub/407
http://abstractsearch.agu.org/meetings/2011/FM/B24A-07.html
_version_ 1766338843405975552