Simulating pan-Arctic runoff with a macro-scale terrestrial water balance model

A terrestrial hydrological model, developed to simulate the high-latitude water cycle, is described, along with comparisons with observed data across the pan-Arctic drainage basin. Gridded fields of plant rooting depth, soil characteristics (texture, organic content), vegetation, and daily time seri...

Full description

Bibliographic Details
Main Authors: Rawlins, Michael A, Lammers, Richard B, Frolking, Steve, Fekete, Balazs M, Vorosmarty, Charles
Format: Text
Language:unknown
Published: University of New Hampshire Scholars' Repository 2003
Subjects:
Online Access:https://scholars.unh.edu/earthsci_facpub/323
http://onlinelibrary.wiley.com/doi/10.1002/hyp.1271/abstract
id ftuninhampshire:oai:scholars.unh.edu:earthsci_facpub-1322
record_format openpolar
spelling ftuninhampshire:oai:scholars.unh.edu:earthsci_facpub-1322 2023-05-15T14:40:09+02:00 Simulating pan-Arctic runoff with a macro-scale terrestrial water balance model Rawlins, Michael A Lammers, Richard B Frolking, Steve Fekete, Balazs M Vorosmarty, Charles 2003-09-01T07:00:00Z https://scholars.unh.edu/earthsci_facpub/323 http://onlinelibrary.wiley.com/doi/10.1002/hyp.1271/abstract unknown University of New Hampshire Scholars' Repository https://scholars.unh.edu/earthsci_facpub/323 http://onlinelibrary.wiley.com/doi/10.1002/hyp.1271/abstract Copyright © 2003 John Wiley & Sons, Ltd. Earth Sciences Scholarship land-surface hydrology runoff water balance model pan-Arctic active layer text 2003 ftuninhampshire 2023-01-30T21:35:03Z A terrestrial hydrological model, developed to simulate the high-latitude water cycle, is described, along with comparisons with observed data across the pan-Arctic drainage basin. Gridded fields of plant rooting depth, soil characteristics (texture, organic content), vegetation, and daily time series of precipitation and air temperature provide the primary inputs used to derive simulated runoff at a grid resolution of 25 km across the pan-Arctic. The pan-Arctic water balance model (P/WBM) includes a simple scheme for simulating daily changes in soil frozen and liquid water amounts, with the thaw–freeze model (TFM) driven by air temperature, modelled soil moisture content, and physiographic data. Climate time series (precipitation and air temperature) are from the National Centers for Environmental Prediction (NCEP) reanalysis project for the period 1980–2001. P/WBM-generated maximum summer active-layer thickness estimates differ from a set of observed data by an average of 12 cm at 27 sites in Alaska, with many of the differences within the variability (1σ) seen in field samples. Simulated long-term annual runoffs are in the range 100 to 400 mm year−1. The highest runoffs are found across northeastern Canada, southern Alaska, and Norway, and lower estimates are noted along the highest latitudes of the terrestrial Arctic in North America and Asia. Good agreement exists between simulated and observed long-term seasonal (winter, spring, summer–fall) runoff to the ten Arctic sea basins (r = 0·84). Model water budgets are most sensitive to changes in precipitation and air temperature, whereas less affect is noted when other model parameters are altered. Increasing daily precipitation by 25% amplifies annual runoff by 50 to 80% for the largest Arctic drainage basins. Ignoring soil ice by eliminating the TFM sub-model leads to runoffs that are 7 to 27% lower than the control run. The results of these model sensitivity experiments, along with other uncertainties in both observed validation data and model inputs, ... Text Arctic Alaska University of New Hampshire: Scholars Repository Arctic Canada Norway
institution Open Polar
collection University of New Hampshire: Scholars Repository
op_collection_id ftuninhampshire
language unknown
topic land-surface hydrology
runoff
water balance model
pan-Arctic
active layer
spellingShingle land-surface hydrology
runoff
water balance model
pan-Arctic
active layer
Rawlins, Michael A
Lammers, Richard B
Frolking, Steve
Fekete, Balazs M
Vorosmarty, Charles
Simulating pan-Arctic runoff with a macro-scale terrestrial water balance model
topic_facet land-surface hydrology
runoff
water balance model
pan-Arctic
active layer
description A terrestrial hydrological model, developed to simulate the high-latitude water cycle, is described, along with comparisons with observed data across the pan-Arctic drainage basin. Gridded fields of plant rooting depth, soil characteristics (texture, organic content), vegetation, and daily time series of precipitation and air temperature provide the primary inputs used to derive simulated runoff at a grid resolution of 25 km across the pan-Arctic. The pan-Arctic water balance model (P/WBM) includes a simple scheme for simulating daily changes in soil frozen and liquid water amounts, with the thaw–freeze model (TFM) driven by air temperature, modelled soil moisture content, and physiographic data. Climate time series (precipitation and air temperature) are from the National Centers for Environmental Prediction (NCEP) reanalysis project for the period 1980–2001. P/WBM-generated maximum summer active-layer thickness estimates differ from a set of observed data by an average of 12 cm at 27 sites in Alaska, with many of the differences within the variability (1σ) seen in field samples. Simulated long-term annual runoffs are in the range 100 to 400 mm year−1. The highest runoffs are found across northeastern Canada, southern Alaska, and Norway, and lower estimates are noted along the highest latitudes of the terrestrial Arctic in North America and Asia. Good agreement exists between simulated and observed long-term seasonal (winter, spring, summer–fall) runoff to the ten Arctic sea basins (r = 0·84). Model water budgets are most sensitive to changes in precipitation and air temperature, whereas less affect is noted when other model parameters are altered. Increasing daily precipitation by 25% amplifies annual runoff by 50 to 80% for the largest Arctic drainage basins. Ignoring soil ice by eliminating the TFM sub-model leads to runoffs that are 7 to 27% lower than the control run. The results of these model sensitivity experiments, along with other uncertainties in both observed validation data and model inputs, ...
format Text
author Rawlins, Michael A
Lammers, Richard B
Frolking, Steve
Fekete, Balazs M
Vorosmarty, Charles
author_facet Rawlins, Michael A
Lammers, Richard B
Frolking, Steve
Fekete, Balazs M
Vorosmarty, Charles
author_sort Rawlins, Michael A
title Simulating pan-Arctic runoff with a macro-scale terrestrial water balance model
title_short Simulating pan-Arctic runoff with a macro-scale terrestrial water balance model
title_full Simulating pan-Arctic runoff with a macro-scale terrestrial water balance model
title_fullStr Simulating pan-Arctic runoff with a macro-scale terrestrial water balance model
title_full_unstemmed Simulating pan-Arctic runoff with a macro-scale terrestrial water balance model
title_sort simulating pan-arctic runoff with a macro-scale terrestrial water balance model
publisher University of New Hampshire Scholars' Repository
publishDate 2003
url https://scholars.unh.edu/earthsci_facpub/323
http://onlinelibrary.wiley.com/doi/10.1002/hyp.1271/abstract
geographic Arctic
Canada
Norway
geographic_facet Arctic
Canada
Norway
genre Arctic
Alaska
genre_facet Arctic
Alaska
op_source Earth Sciences Scholarship
op_relation https://scholars.unh.edu/earthsci_facpub/323
http://onlinelibrary.wiley.com/doi/10.1002/hyp.1271/abstract
op_rights Copyright © 2003 John Wiley & Sons, Ltd.
_version_ 1766312052122451968