Multistage substorm expansion: Auroral dynamics in relation to plasma sheet particle injection, precipitation, and plasma convection

We present observations of the auroral expansions during two substorms, focusing on multistage intensifications and the morphology of the poleward boundary, and relate these auroral observations to the local plasma convection and plasma sheet dynamics. The observations are made by meridian scanning...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research
Main Authors: Sandholt, Per Even, Farrugia, Charlie J., Lester, Mark, Cowley, Stan, Milan, Steve, Denig, William F., Lybekk, Bjorn, Trondsen, Espen, Vorobjev, Vjacheslav
Format: Text
Language:unknown
Published: University of New Hampshire Scholars' Repository 2002
Subjects:
Online Access:https://scholars.unh.edu/cmerg/257
https://doi.org/10.1029/2001JA900116
id ftuninhampshire:oai:scholars.unh.edu:cmerg-1256
record_format openpolar
spelling ftuninhampshire:oai:scholars.unh.edu:cmerg-1256 2023-05-15T17:48:29+02:00 Multistage substorm expansion: Auroral dynamics in relation to plasma sheet particle injection, precipitation, and plasma convection Sandholt, Per Even Farrugia, Charlie J. Lester, Mark Cowley, Stan Milan, Steve Denig, William F. Lybekk, Bjorn Trondsen, Espen Vorobjev, Vjacheslav 2002-11-02T08:00:00Z https://scholars.unh.edu/cmerg/257 https://doi.org/10.1029/2001JA900116 unknown University of New Hampshire Scholars' Repository https://scholars.unh.edu/cmerg/257 https://doi.org/10.1029/2001JA900116 Coronal Mass Ejection Research Group text 2002 ftuninhampshire https://doi.org/10.1029/2001JA900116 2023-01-30T22:05:14Z We present observations of the auroral expansions during two substorms, focusing on multistage intensifications and the morphology of the poleward boundary, and relate these auroral observations to the local plasma convection and plasma sheet dynamics. The observations are made by meridian scanning photometers and an all-sky camera (ASC) at Ny Ålesund, Svalbard (76° magnetic latitude (MLAT)), an ASC in Lovozero, Russia (64° MLAT), the International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometer chain in Svalbard and Scandinavia, the HYDRA instrument on Polar located at the inner edge of the plasma sheet, particle detectors on DMSP F13 and DMSP F14 traversing the ionospheric projection of the plasma sheet, and the CUTLASS Finland HF radar. In each substorm the aurora between 70° and 80° MLAT consisted of two branches separated by ∼5° in MLAT. The higher-latitude branch (at ∼75°–78°MLAT) was subject to a sequence of short-lived (∼1–2 min) intensifications, so-called “poleward boundary intensifications” (PBIs), recurring at ∼3-min intervals. Subsequent to each brightening, auroral forms traveled equatorward at a speed of ∼1.0–1.5 km s−1. On Polar the PBIs are related on a one-to-one basis with injections of electrons in the 5- to 20-keV energy range at the inner edge of the equatorial plasma sheet with predominantly a trapped distribution, delayed by ∼5 min. Electron precipitation within 60°–77° MLAT, corresponding to a large radial extent of the plasma sheet, is documented by DMSP flights in the 1800–2000 magnetic local time (MLT) sector. In discussing the branches of the high-latitude aurora within the context of current understanding of the relation of bursty bulk flows to substorm expansion phase dynamics, we note the following: (1) the initial auroral breakup located at 63°–64° MLAT near the equatorward edge of plasma sheet precipitation, which was followed by (2) two successive brightenings/auroral expansions appearing within 72°–74° MLAT/∼2100 MLT, separated by 14 min, (3) a 20-min-long ... Text Ny Ålesund Ny-Ålesund Svalbard University of New Hampshire: Scholars Repository Svalbard Ny-Ålesund Lovozero ENVELOPE(35.016,35.016,68.006,68.006) Journal of Geophysical Research 107 A11
institution Open Polar
collection University of New Hampshire: Scholars Repository
op_collection_id ftuninhampshire
language unknown
description We present observations of the auroral expansions during two substorms, focusing on multistage intensifications and the morphology of the poleward boundary, and relate these auroral observations to the local plasma convection and plasma sheet dynamics. The observations are made by meridian scanning photometers and an all-sky camera (ASC) at Ny Ålesund, Svalbard (76° magnetic latitude (MLAT)), an ASC in Lovozero, Russia (64° MLAT), the International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometer chain in Svalbard and Scandinavia, the HYDRA instrument on Polar located at the inner edge of the plasma sheet, particle detectors on DMSP F13 and DMSP F14 traversing the ionospheric projection of the plasma sheet, and the CUTLASS Finland HF radar. In each substorm the aurora between 70° and 80° MLAT consisted of two branches separated by ∼5° in MLAT. The higher-latitude branch (at ∼75°–78°MLAT) was subject to a sequence of short-lived (∼1–2 min) intensifications, so-called “poleward boundary intensifications” (PBIs), recurring at ∼3-min intervals. Subsequent to each brightening, auroral forms traveled equatorward at a speed of ∼1.0–1.5 km s−1. On Polar the PBIs are related on a one-to-one basis with injections of electrons in the 5- to 20-keV energy range at the inner edge of the equatorial plasma sheet with predominantly a trapped distribution, delayed by ∼5 min. Electron precipitation within 60°–77° MLAT, corresponding to a large radial extent of the plasma sheet, is documented by DMSP flights in the 1800–2000 magnetic local time (MLT) sector. In discussing the branches of the high-latitude aurora within the context of current understanding of the relation of bursty bulk flows to substorm expansion phase dynamics, we note the following: (1) the initial auroral breakup located at 63°–64° MLAT near the equatorward edge of plasma sheet precipitation, which was followed by (2) two successive brightenings/auroral expansions appearing within 72°–74° MLAT/∼2100 MLT, separated by 14 min, (3) a 20-min-long ...
format Text
author Sandholt, Per Even
Farrugia, Charlie J.
Lester, Mark
Cowley, Stan
Milan, Steve
Denig, William F.
Lybekk, Bjorn
Trondsen, Espen
Vorobjev, Vjacheslav
spellingShingle Sandholt, Per Even
Farrugia, Charlie J.
Lester, Mark
Cowley, Stan
Milan, Steve
Denig, William F.
Lybekk, Bjorn
Trondsen, Espen
Vorobjev, Vjacheslav
Multistage substorm expansion: Auroral dynamics in relation to plasma sheet particle injection, precipitation, and plasma convection
author_facet Sandholt, Per Even
Farrugia, Charlie J.
Lester, Mark
Cowley, Stan
Milan, Steve
Denig, William F.
Lybekk, Bjorn
Trondsen, Espen
Vorobjev, Vjacheslav
author_sort Sandholt, Per Even
title Multistage substorm expansion: Auroral dynamics in relation to plasma sheet particle injection, precipitation, and plasma convection
title_short Multistage substorm expansion: Auroral dynamics in relation to plasma sheet particle injection, precipitation, and plasma convection
title_full Multistage substorm expansion: Auroral dynamics in relation to plasma sheet particle injection, precipitation, and plasma convection
title_fullStr Multistage substorm expansion: Auroral dynamics in relation to plasma sheet particle injection, precipitation, and plasma convection
title_full_unstemmed Multistage substorm expansion: Auroral dynamics in relation to plasma sheet particle injection, precipitation, and plasma convection
title_sort multistage substorm expansion: auroral dynamics in relation to plasma sheet particle injection, precipitation, and plasma convection
publisher University of New Hampshire Scholars' Repository
publishDate 2002
url https://scholars.unh.edu/cmerg/257
https://doi.org/10.1029/2001JA900116
long_lat ENVELOPE(35.016,35.016,68.006,68.006)
geographic Svalbard
Ny-Ålesund
Lovozero
geographic_facet Svalbard
Ny-Ålesund
Lovozero
genre Ny Ålesund
Ny-Ålesund
Svalbard
genre_facet Ny Ålesund
Ny-Ålesund
Svalbard
op_source Coronal Mass Ejection Research Group
op_relation https://scholars.unh.edu/cmerg/257
https://doi.org/10.1029/2001JA900116
op_doi https://doi.org/10.1029/2001JA900116
container_title Journal of Geophysical Research
container_volume 107
container_issue A11
_version_ 1766154567134740480