X-ray computed tomography: Morphological and porosity characterization of giant Antarctic micrometeorites
Giant micrometeorites (MMs; 400–2000μm) are exceedingly rare and scientifically valuable. Three-dimensional nondestructive characterization by X-ray computed tomography (X-CT) provides information on the petrography and thus petrogenesis of MMs and serves as a guide to maximize subsequent multi-anal...
Published in: | Meteoritics & Planetary Science |
---|---|
Main Authors: | , , , , , , |
Other Authors: | , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | http://hdl.handle.net/11367/92792 https://doi.org/10.1111/maps.13533 |
id |
ftuninapoliparth:oai:ricerca.uniparthenope.it:11367/92792 |
---|---|
record_format |
openpolar |
spelling |
ftuninapoliparth:oai:ricerca.uniparthenope.it:11367/92792 2024-04-14T08:04:06+00:00 X-ray computed tomography: Morphological and porosity characterization of giant Antarctic micrometeorites Dionnet Z. Suttle M. D. Longobardo A. Rotundi A. Folco L. Della Corte V. King A. Dionnet, Z. Suttle, M. D. Longobardo, A. Rotundi, A. Folco, L. Della Corte, V. King, A. 2020 http://hdl.handle.net/11367/92792 https://doi.org/10.1111/maps.13533 eng eng info:eu-repo/semantics/altIdentifier/wos/WOS:000541922500001 volume:55 issue:7 firstpage:1581 lastpage:1599 numberofpages:19 journal:METEORITICS & PLANETARY SCIENCE http://hdl.handle.net/11367/92792 doi:10.1111/maps.13533 info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85087297736 info:eu-repo/semantics/article 2020 ftuninapoliparth https://doi.org/10.1111/maps.13533 2024-03-21T18:04:13Z Giant micrometeorites (MMs; 400–2000μm) are exceedingly rare and scientifically valuable. Three-dimensional nondestructive characterization by X-ray computed tomography (X-CT) provides information on the petrography and thus petrogenesis of MMs and serves as a guide to maximize subsequent multi-analytical studies on such precious planetary materials. Here, we discuss the results obtained by X-CT on 22 giant MMs and the classification based on their 3-D density contrast images. Scoriaceous and unmelted MMs have distinct porosity ranges (10–40vol% versus 0–25vol%, respectively). We observe a porosity variation inside scoriaceous MMs, which allows their atmospheric entry flight history to be resolved. For the first time, spinning entry is explicitly demonstrated for four partially melted MMs. Furthermore, we are able to resolve the thermal gradient in a single particle, based on porosity variation (seen as a progressive increase in pore abundance and size with higher peak temperatures). Moreover, we explore parent body alteration through the 3-D analysis of pores distribution, showing that shock fabrics are either absent or weakly developed in our data set. Finally, owing to the detection of pseudomorphic chondrules, we estimate that the intensively aqueously altered C1 or CI-like material could represent 18% of the MM flux at this size fraction (400–1000μm). Article in Journal/Newspaper Antarc* Antarctic Università degli Studi di Napoli "Parthenope": CINECA IRIS Antarctic Meteoritics & Planetary Science 55 7 1581 1599 |
institution |
Open Polar |
collection |
Università degli Studi di Napoli "Parthenope": CINECA IRIS |
op_collection_id |
ftuninapoliparth |
language |
English |
description |
Giant micrometeorites (MMs; 400–2000μm) are exceedingly rare and scientifically valuable. Three-dimensional nondestructive characterization by X-ray computed tomography (X-CT) provides information on the petrography and thus petrogenesis of MMs and serves as a guide to maximize subsequent multi-analytical studies on such precious planetary materials. Here, we discuss the results obtained by X-CT on 22 giant MMs and the classification based on their 3-D density contrast images. Scoriaceous and unmelted MMs have distinct porosity ranges (10–40vol% versus 0–25vol%, respectively). We observe a porosity variation inside scoriaceous MMs, which allows their atmospheric entry flight history to be resolved. For the first time, spinning entry is explicitly demonstrated for four partially melted MMs. Furthermore, we are able to resolve the thermal gradient in a single particle, based on porosity variation (seen as a progressive increase in pore abundance and size with higher peak temperatures). Moreover, we explore parent body alteration through the 3-D analysis of pores distribution, showing that shock fabrics are either absent or weakly developed in our data set. Finally, owing to the detection of pseudomorphic chondrules, we estimate that the intensively aqueously altered C1 or CI-like material could represent 18% of the MM flux at this size fraction (400–1000μm). |
author2 |
Dionnet, Z. Suttle, M. D. Longobardo, A. Rotundi, A. Folco, L. Della Corte, V. King, A. |
format |
Article in Journal/Newspaper |
author |
Dionnet Z. Suttle M. D. Longobardo A. Rotundi A. Folco L. Della Corte V. King A. |
spellingShingle |
Dionnet Z. Suttle M. D. Longobardo A. Rotundi A. Folco L. Della Corte V. King A. X-ray computed tomography: Morphological and porosity characterization of giant Antarctic micrometeorites |
author_facet |
Dionnet Z. Suttle M. D. Longobardo A. Rotundi A. Folco L. Della Corte V. King A. |
author_sort |
Dionnet Z. |
title |
X-ray computed tomography: Morphological and porosity characterization of giant Antarctic micrometeorites |
title_short |
X-ray computed tomography: Morphological and porosity characterization of giant Antarctic micrometeorites |
title_full |
X-ray computed tomography: Morphological and porosity characterization of giant Antarctic micrometeorites |
title_fullStr |
X-ray computed tomography: Morphological and porosity characterization of giant Antarctic micrometeorites |
title_full_unstemmed |
X-ray computed tomography: Morphological and porosity characterization of giant Antarctic micrometeorites |
title_sort |
x-ray computed tomography: morphological and porosity characterization of giant antarctic micrometeorites |
publishDate |
2020 |
url |
http://hdl.handle.net/11367/92792 https://doi.org/10.1111/maps.13533 |
geographic |
Antarctic |
geographic_facet |
Antarctic |
genre |
Antarc* Antarctic |
genre_facet |
Antarc* Antarctic |
op_relation |
info:eu-repo/semantics/altIdentifier/wos/WOS:000541922500001 volume:55 issue:7 firstpage:1581 lastpage:1599 numberofpages:19 journal:METEORITICS & PLANETARY SCIENCE http://hdl.handle.net/11367/92792 doi:10.1111/maps.13533 info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85087297736 |
op_doi |
https://doi.org/10.1111/maps.13533 |
container_title |
Meteoritics & Planetary Science |
container_volume |
55 |
container_issue |
7 |
container_start_page |
1581 |
op_container_end_page |
1599 |
_version_ |
1796300475727872000 |