Extreme snowstorms lead to large-scale seabird breeding failures in Antarctica
International audience Climate change increases the frequency and intensity of extreme weather events that negatively impact wildlife, from individuals to whole ecosystems1. In polar environments, such events include heat waves2, anomalous sea ice concentrations3 and storms4. Polar seabirds are adap...
Published in: | Current Biology |
---|---|
Main Authors: | , , , , , , , |
Other Authors: | , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2023
|
Subjects: | |
Online Access: | https://hal.science/hal-04032396 https://hal.science/hal-04032396/document https://hal.science/hal-04032396/file/DCB33_2023.pdf https://doi.org/10.1016/j.cub.2022.12.055 |
Summary: | International audience Climate change increases the frequency and intensity of extreme weather events that negatively impact wildlife, from individuals to whole ecosystems1. In polar environments, such events include heat waves2, anomalous sea ice concentrations3 and storms4. Polar seabirds are adapted to withstand harsh conditions, and although extreme weather events affect their breeding success and other demographic rates, they are thought to affect only a part of the population. Complete breeding failure of an entire population due to extreme environmental conditions is rarely observed5. Here we report how exceptional storm activity in Dronning Maud Land (DML), Antarctica, in the austral summer of 2021/2022 caused almost complete and large-scale breeding failures of the area's three most common seabird species - Antarctic petrel (Thalassoica antarctica), Snow petrel (Pagodroma nivea) and South polar skua (Stercorarius maccormicki). |
---|