Phenotyping and modeling of root hydraulic architecture reveal critical determinants of axial water transport
International audience Water uptake by roots is a key adaptation of plants to aerial life. Water uptake depends on root system architecture (RSA) and tissue hydraulic properties that, together, shape the root hydraulic architecture. This work investigates how the interplay between conductivities alo...
Published in: | Plant Physiology |
---|---|
Main Authors: | , , , , , , |
Other Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2022
|
Subjects: | |
Online Access: | https://hal.inrae.fr/hal-03701955 https://hal.inrae.fr/hal-03701955/document https://hal.inrae.fr/hal-03701955/file/BoursiacY.-et%20al-PostPrint-PlantPhysiol-2022.pdf https://doi.org/10.1093/plphys/kiac281 |
id |
ftunimontpellier:oai:HAL:hal-03701955v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Université de Montpellier: HAL |
op_collection_id |
ftunimontpellier |
language |
English |
topic |
[SDV.BV]Life Sciences [q-bio]/Vegetal Biology [SDV]Life Sciences [q-bio] |
spellingShingle |
[SDV.BV]Life Sciences [q-bio]/Vegetal Biology [SDV]Life Sciences [q-bio] Boursiac, Yann Pradal, Christophe Bauget, Fabrice Lucas, Mikaël Delivorias, Stathis Godin, Christophe Maurel, Christophe Phenotyping and modeling of root hydraulic architecture reveal critical determinants of axial water transport |
topic_facet |
[SDV.BV]Life Sciences [q-bio]/Vegetal Biology [SDV]Life Sciences [q-bio] |
description |
International audience Water uptake by roots is a key adaptation of plants to aerial life. Water uptake depends on root system architecture (RSA) and tissue hydraulic properties that, together, shape the root hydraulic architecture. This work investigates how the interplay between conductivities along radial (e.g. aquaporins) and axial (e.g. xylem vessels) pathways determines the water transport properties of highly branched RSAs as found in adult Arabidopsis (Arabidopsis thaliana) plants. A hydraulic model named HydroRoot was developed, based on multi-scale tree graph representations of RSAs. Root water flow was measured by the pressure chamber technique after successive cuts of a same root system from the tip toward the base. HydroRoot model inversion in corresponding RSAs allowed us to concomitantly determine radial and axial conductivities, providing evidence that the latter is often overestimated by classical evaluation based on the Hagen–Poiseuille law. Organizing principles of Arabidopsis primary and lateral root growth and branching were determined and used to apply the HydroRoot model to an extended set of simulated RSAs. Sensitivity analyses revealed that water transport can be co-limited by radial and axial conductances throughout the whole RSA. The number of roots that can be sectioned (intercepted) at a given distance from the base was defined as an accessible and informative indicator of RSA. The overall set of experimental and theoretical procedures was applied to plants mutated in ESKIMO1 and previously shown to have xylem collapse. This approach will be instrumental to dissect the root water transport phenotype of plants with intricate alterations in root growth or transport functions. |
author2 |
Institut des Sciences des Plantes de Montpellier (IPSIM) Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM) Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier Département Systèmes Biologiques (Cirad-BIOS) Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) Scientific Data Management (ZENITH) Inria Sophia Antipolis - Méditerranée (CRISAM) Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) Simulation et Analyse de la morphogenèse in siliCo (MOSAIC) Reproduction et développement des plantes (RDP) École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL) Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL) Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Inria Lyon Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria) Zenith Mosaic |
format |
Article in Journal/Newspaper |
author |
Boursiac, Yann Pradal, Christophe Bauget, Fabrice Lucas, Mikaël Delivorias, Stathis Godin, Christophe Maurel, Christophe |
author_facet |
Boursiac, Yann Pradal, Christophe Bauget, Fabrice Lucas, Mikaël Delivorias, Stathis Godin, Christophe Maurel, Christophe |
author_sort |
Boursiac, Yann |
title |
Phenotyping and modeling of root hydraulic architecture reveal critical determinants of axial water transport |
title_short |
Phenotyping and modeling of root hydraulic architecture reveal critical determinants of axial water transport |
title_full |
Phenotyping and modeling of root hydraulic architecture reveal critical determinants of axial water transport |
title_fullStr |
Phenotyping and modeling of root hydraulic architecture reveal critical determinants of axial water transport |
title_full_unstemmed |
Phenotyping and modeling of root hydraulic architecture reveal critical determinants of axial water transport |
title_sort |
phenotyping and modeling of root hydraulic architecture reveal critical determinants of axial water transport |
publisher |
HAL CCSD |
publishDate |
2022 |
url |
https://hal.inrae.fr/hal-03701955 https://hal.inrae.fr/hal-03701955/document https://hal.inrae.fr/hal-03701955/file/BoursiacY.-et%20al-PostPrint-PlantPhysiol-2022.pdf https://doi.org/10.1093/plphys/kiac281 |
long_lat |
ENVELOPE(6.545,6.545,62.545,62.545) |
geographic |
Hagen |
geographic_facet |
Hagen |
genre |
eskimo* |
genre_facet |
eskimo* |
op_source |
ISSN: 0032-0889 EISSN: 1532-2548 Plant Physiology https://hal.inrae.fr/hal-03701955 Plant Physiology, 2022, 190 (2), pp.1289-1306. ⟨10.1093/plphys/kiac281⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1093/plphys/kiac281 info:eu-repo/semantics/altIdentifier/pmid/35708646 hal-03701955 https://hal.inrae.fr/hal-03701955 https://hal.inrae.fr/hal-03701955/document https://hal.inrae.fr/hal-03701955/file/BoursiacY.-et%20al-PostPrint-PlantPhysiol-2022.pdf doi:10.1093/plphys/kiac281 PUBMED: 35708646 WOS: 000813477800001 |
op_rights |
http://creativecommons.org/licenses/by-nc-nd/ info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1093/plphys/kiac281 |
container_title |
Plant Physiology |
_version_ |
1802643855850340352 |
spelling |
ftunimontpellier:oai:HAL:hal-03701955v1 2024-06-23T07:52:32+00:00 Phenotyping and modeling of root hydraulic architecture reveal critical determinants of axial water transport Boursiac, Yann Pradal, Christophe Bauget, Fabrice Lucas, Mikaël Delivorias, Stathis Godin, Christophe Maurel, Christophe Institut des Sciences des Plantes de Montpellier (IPSIM) Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM) Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier Département Systèmes Biologiques (Cirad-BIOS) Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) Scientific Data Management (ZENITH) Inria Sophia Antipolis - Méditerranée (CRISAM) Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) Simulation et Analyse de la morphogenèse in siliCo (MOSAIC) Reproduction et développement des plantes (RDP) École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL) Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL) Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Inria Lyon Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria) Zenith Mosaic 2022-06-16 https://hal.inrae.fr/hal-03701955 https://hal.inrae.fr/hal-03701955/document https://hal.inrae.fr/hal-03701955/file/BoursiacY.-et%20al-PostPrint-PlantPhysiol-2022.pdf https://doi.org/10.1093/plphys/kiac281 en eng HAL CCSD Oxford University Press American Society of Plant Biologists info:eu-repo/semantics/altIdentifier/doi/10.1093/plphys/kiac281 info:eu-repo/semantics/altIdentifier/pmid/35708646 hal-03701955 https://hal.inrae.fr/hal-03701955 https://hal.inrae.fr/hal-03701955/document https://hal.inrae.fr/hal-03701955/file/BoursiacY.-et%20al-PostPrint-PlantPhysiol-2022.pdf doi:10.1093/plphys/kiac281 PUBMED: 35708646 WOS: 000813477800001 http://creativecommons.org/licenses/by-nc-nd/ info:eu-repo/semantics/OpenAccess ISSN: 0032-0889 EISSN: 1532-2548 Plant Physiology https://hal.inrae.fr/hal-03701955 Plant Physiology, 2022, 190 (2), pp.1289-1306. ⟨10.1093/plphys/kiac281⟩ [SDV.BV]Life Sciences [q-bio]/Vegetal Biology [SDV]Life Sciences [q-bio] info:eu-repo/semantics/article Journal articles 2022 ftunimontpellier https://doi.org/10.1093/plphys/kiac281 2024-06-03T14:21:31Z International audience Water uptake by roots is a key adaptation of plants to aerial life. Water uptake depends on root system architecture (RSA) and tissue hydraulic properties that, together, shape the root hydraulic architecture. This work investigates how the interplay between conductivities along radial (e.g. aquaporins) and axial (e.g. xylem vessels) pathways determines the water transport properties of highly branched RSAs as found in adult Arabidopsis (Arabidopsis thaliana) plants. A hydraulic model named HydroRoot was developed, based on multi-scale tree graph representations of RSAs. Root water flow was measured by the pressure chamber technique after successive cuts of a same root system from the tip toward the base. HydroRoot model inversion in corresponding RSAs allowed us to concomitantly determine radial and axial conductivities, providing evidence that the latter is often overestimated by classical evaluation based on the Hagen–Poiseuille law. Organizing principles of Arabidopsis primary and lateral root growth and branching were determined and used to apply the HydroRoot model to an extended set of simulated RSAs. Sensitivity analyses revealed that water transport can be co-limited by radial and axial conductances throughout the whole RSA. The number of roots that can be sectioned (intercepted) at a given distance from the base was defined as an accessible and informative indicator of RSA. The overall set of experimental and theoretical procedures was applied to plants mutated in ESKIMO1 and previously shown to have xylem collapse. This approach will be instrumental to dissect the root water transport phenotype of plants with intricate alterations in root growth or transport functions. Article in Journal/Newspaper eskimo* Université de Montpellier: HAL Hagen ENVELOPE(6.545,6.545,62.545,62.545) Plant Physiology |