Combining Cochlear Analysis and Auditory Evoked Potentials in a Beluga Whale With High-Frequency Hearing Loss
International audience Correlations between inner ear morphology and auditory sensitivity in the same individual are extremely difficult to obtain for stranded cetaceans. Animals in captivity and rehabilitation offer the opportunity to combine several techniques to study the auditory system and case...
Published in: | Frontiers in Veterinary Science |
---|---|
Main Authors: | , , , , , , , |
Other Authors: | , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2020
|
Subjects: | |
Online Access: | https://hal.umontpellier.fr/hal-03176584 https://hal.umontpellier.fr/hal-03176584/document https://hal.umontpellier.fr/hal-03176584/file/fvets-07-534917.pdf https://doi.org/10.3389/fvets.2020.534917 |
id |
ftunimontpellier:oai:HAL:hal-03176584v1 |
---|---|
record_format |
openpolar |
spelling |
ftunimontpellier:oai:HAL:hal-03176584v1 2023-05-15T15:41:42+02:00 Combining Cochlear Analysis and Auditory Evoked Potentials in a Beluga Whale With High-Frequency Hearing Loss Morell, Maria Raverty, Stephen, Mulsow, Jason Haulena, Martin Barrett-Lennard, Lance Nordstrom, Chad, Venail, Frederic Shadwick, Robert University of British Columbia (UBC) Institut des Neurosciences de Montpellier (INM) Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM) National Marine Mammal Foundation San Diego Coastal Oceans Research Institute Fisheries and Oceans Canada (DFO) Centre Hospitalier Régional Universitaire Montpellier (CHRU Montpellier) 2020 https://hal.umontpellier.fr/hal-03176584 https://hal.umontpellier.fr/hal-03176584/document https://hal.umontpellier.fr/hal-03176584/file/fvets-07-534917.pdf https://doi.org/10.3389/fvets.2020.534917 en eng HAL CCSD Frontiers Media info:eu-repo/semantics/altIdentifier/doi/10.3389/fvets.2020.534917 info:eu-repo/semantics/altIdentifier/pmid/33330679 hal-03176584 https://hal.umontpellier.fr/hal-03176584 https://hal.umontpellier.fr/hal-03176584/document https://hal.umontpellier.fr/hal-03176584/file/fvets-07-534917.pdf doi:10.3389/fvets.2020.534917 PUBMED: 33330679 PUBMEDCENTRAL: PMC7672125 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 2297-1769 Frontiers in Veterinary Science https://hal.umontpellier.fr/hal-03176584 Frontiers in Veterinary Science, Frontiers Media, 2020, 7, pp.534917. ⟨10.3389/fvets.2020.534917⟩ Delphinapterus leucas auditory evoked potentials beluga cochlea high-frequency hearing loss immunofluorescence inner ear scanning electron microscopy [SDV.BA.MVSA]Life Sciences [q-bio]/Animal biology/Veterinary medicine and animal Health info:eu-repo/semantics/article Journal articles 2020 ftunimontpellier https://doi.org/10.3389/fvets.2020.534917 2022-09-20T22:34:14Z International audience Correlations between inner ear morphology and auditory sensitivity in the same individual are extremely difficult to obtain for stranded cetaceans. Animals in captivity and rehabilitation offer the opportunity to combine several techniques to study the auditory system and cases of hearing impairment in a controlled environment. Morphologic and auditory findings from two beluga whales (Delphinapterus leucas) in managed care are presented. Cochlear analysis of a 21-year-old beluga whale showed bilateral high-frequency hearing loss. Specifically, scanning electron microscopy of the left ear revealed sensory cell death in the first 4.9 mm of the base of the cochlea with scar formation. Immunofluorescence microscopy of the right ear confirmed the absence of hair cells and type I afferent innervation in the first 6.6 mm of the base of the cochlea, most likely due to an ischemia. Auditory evoked potentials (AEPs) measured 1.5 years prior this beluga's death showed a generalized hearing loss, being more pronounced in the high frequencies. This individual might have had a mixed hearing loss that would explain the generalized hearing impairment. Conversely, based on AEP evaluation, her mother had normal hearing and subsequent cochlear analysis did not feature any apparent sensorineural pathology. This is believed to be the first study to compare two cochlear analysis techniques and hearing sensitivity measurements from AEPs in cetaceans. The ability to combine morphological and auditory data is crucial to validate predictions of cochlear frequency maps based on morphological features. In addition, our study shows that these three complementary analysis techniques lead to comparable results, thus improving our understanding of how hearing impairment can be detected in stranding cases. Article in Journal/Newspaper Beluga Beluga whale Beluga* Delphinapterus leucas Université de Montpellier: HAL Frontiers in Veterinary Science 7 |
institution |
Open Polar |
collection |
Université de Montpellier: HAL |
op_collection_id |
ftunimontpellier |
language |
English |
topic |
Delphinapterus leucas auditory evoked potentials beluga cochlea high-frequency hearing loss immunofluorescence inner ear scanning electron microscopy [SDV.BA.MVSA]Life Sciences [q-bio]/Animal biology/Veterinary medicine and animal Health |
spellingShingle |
Delphinapterus leucas auditory evoked potentials beluga cochlea high-frequency hearing loss immunofluorescence inner ear scanning electron microscopy [SDV.BA.MVSA]Life Sciences [q-bio]/Animal biology/Veterinary medicine and animal Health Morell, Maria Raverty, Stephen, Mulsow, Jason Haulena, Martin Barrett-Lennard, Lance Nordstrom, Chad, Venail, Frederic Shadwick, Robert Combining Cochlear Analysis and Auditory Evoked Potentials in a Beluga Whale With High-Frequency Hearing Loss |
topic_facet |
Delphinapterus leucas auditory evoked potentials beluga cochlea high-frequency hearing loss immunofluorescence inner ear scanning electron microscopy [SDV.BA.MVSA]Life Sciences [q-bio]/Animal biology/Veterinary medicine and animal Health |
description |
International audience Correlations between inner ear morphology and auditory sensitivity in the same individual are extremely difficult to obtain for stranded cetaceans. Animals in captivity and rehabilitation offer the opportunity to combine several techniques to study the auditory system and cases of hearing impairment in a controlled environment. Morphologic and auditory findings from two beluga whales (Delphinapterus leucas) in managed care are presented. Cochlear analysis of a 21-year-old beluga whale showed bilateral high-frequency hearing loss. Specifically, scanning electron microscopy of the left ear revealed sensory cell death in the first 4.9 mm of the base of the cochlea with scar formation. Immunofluorescence microscopy of the right ear confirmed the absence of hair cells and type I afferent innervation in the first 6.6 mm of the base of the cochlea, most likely due to an ischemia. Auditory evoked potentials (AEPs) measured 1.5 years prior this beluga's death showed a generalized hearing loss, being more pronounced in the high frequencies. This individual might have had a mixed hearing loss that would explain the generalized hearing impairment. Conversely, based on AEP evaluation, her mother had normal hearing and subsequent cochlear analysis did not feature any apparent sensorineural pathology. This is believed to be the first study to compare two cochlear analysis techniques and hearing sensitivity measurements from AEPs in cetaceans. The ability to combine morphological and auditory data is crucial to validate predictions of cochlear frequency maps based on morphological features. In addition, our study shows that these three complementary analysis techniques lead to comparable results, thus improving our understanding of how hearing impairment can be detected in stranding cases. |
author2 |
University of British Columbia (UBC) Institut des Neurosciences de Montpellier (INM) Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM) National Marine Mammal Foundation San Diego Coastal Oceans Research Institute Fisheries and Oceans Canada (DFO) Centre Hospitalier Régional Universitaire Montpellier (CHRU Montpellier) |
format |
Article in Journal/Newspaper |
author |
Morell, Maria Raverty, Stephen, Mulsow, Jason Haulena, Martin Barrett-Lennard, Lance Nordstrom, Chad, Venail, Frederic Shadwick, Robert |
author_facet |
Morell, Maria Raverty, Stephen, Mulsow, Jason Haulena, Martin Barrett-Lennard, Lance Nordstrom, Chad, Venail, Frederic Shadwick, Robert |
author_sort |
Morell, Maria |
title |
Combining Cochlear Analysis and Auditory Evoked Potentials in a Beluga Whale With High-Frequency Hearing Loss |
title_short |
Combining Cochlear Analysis and Auditory Evoked Potentials in a Beluga Whale With High-Frequency Hearing Loss |
title_full |
Combining Cochlear Analysis and Auditory Evoked Potentials in a Beluga Whale With High-Frequency Hearing Loss |
title_fullStr |
Combining Cochlear Analysis and Auditory Evoked Potentials in a Beluga Whale With High-Frequency Hearing Loss |
title_full_unstemmed |
Combining Cochlear Analysis and Auditory Evoked Potentials in a Beluga Whale With High-Frequency Hearing Loss |
title_sort |
combining cochlear analysis and auditory evoked potentials in a beluga whale with high-frequency hearing loss |
publisher |
HAL CCSD |
publishDate |
2020 |
url |
https://hal.umontpellier.fr/hal-03176584 https://hal.umontpellier.fr/hal-03176584/document https://hal.umontpellier.fr/hal-03176584/file/fvets-07-534917.pdf https://doi.org/10.3389/fvets.2020.534917 |
genre |
Beluga Beluga whale Beluga* Delphinapterus leucas |
genre_facet |
Beluga Beluga whale Beluga* Delphinapterus leucas |
op_source |
ISSN: 2297-1769 Frontiers in Veterinary Science https://hal.umontpellier.fr/hal-03176584 Frontiers in Veterinary Science, Frontiers Media, 2020, 7, pp.534917. ⟨10.3389/fvets.2020.534917⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.3389/fvets.2020.534917 info:eu-repo/semantics/altIdentifier/pmid/33330679 hal-03176584 https://hal.umontpellier.fr/hal-03176584 https://hal.umontpellier.fr/hal-03176584/document https://hal.umontpellier.fr/hal-03176584/file/fvets-07-534917.pdf doi:10.3389/fvets.2020.534917 PUBMED: 33330679 PUBMEDCENTRAL: PMC7672125 |
op_rights |
http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.3389/fvets.2020.534917 |
container_title |
Frontiers in Veterinary Science |
container_volume |
7 |
_version_ |
1766374588980133888 |