Enhancing resistance to Vibrio aestuarianus in Crassostrea gigas by selection

International audience Ostreid herpesvirus 1 (OsHV-1) and Vibrio aestuarianus are the two main pathogens affecting the production of French oyster (Crassostrea gigas). The absence of genetic correlation between the two diseases is promising for the development of stocks with dual resistance. Using u...

Full description

Bibliographic Details
Published in:Aquaculture
Main Authors: Degremont, Lionel, Azéma, Patrick, Maurouard, Elise, Travers, Marie-Agnès
Other Authors: Unité Santé, Génétique et Microbiologie des Mollusques (SGMM), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Direction Générale du Trésor, Interactions Hôtes-Pathogènes-Environnements (IHPE), Université de Perpignan Via Domitia (UPVD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.science/hal-02875156
https://hal.science/hal-02875156/document
https://hal.science/hal-02875156/file/Degremont-2020-Aquaculture-Enhancing-MANUSCRIT.pdf
https://doi.org/10.1016/j.aquaculture.2020.735429
Description
Summary:International audience Ostreid herpesvirus 1 (OsHV-1) and Vibrio aestuarianus are the two main pathogens affecting the production of French oyster (Crassostrea gigas). The absence of genetic correlation between the two diseases is promising for the development of stocks with dual resistance. Using unselected and selected oysters concerning enhanced resistance to OsHV-1 infection, we investigated the first generation of mass selection and the response to selection to increase the resistance to V. aestuarianus for two stocks. For each stock, four groups were produced in June 2013 using either parents unchallenged with the bacteria or counterparts that survived experimental infections by the bacteria. Thus, groups were unselected oysters for both pathogens, selected for either the virus or the bacteria, and dually selected for both pathogens. All groups of each stock were evaluated at the spat and juvenile sizes following experimental infection by V. aestuarianus in May 2014. Regardless of their level of selection for OsHV-1, oysters produced from parents that survived V. aestuarianus showed similar mortalities (47% and 53% for stocks A and B, respectively) during the bacterial challenge than those produced from unchallenged parents (43% and 56%, respectively). Thus, no positive response to selection at the first generation to increase the bacterial resistance was found at the spat and juvenile sizes. At the adult stage and with experimental infection with V. aestuarianus, only stock B showed a positive response to selection for increasing the bacterial resistance with a decrease in mortality of 14% in comparison with unselected oysters. Similar results were observed when oysters were tested for 27 months in the field with the absence of response to selection for stock A, while a 13% decrease in mortality was observed for stock B. For stock B, mortality at endpoint after 27 months in the field reached 89% for the control not selected at all, decreased to 84% for oysters selected for their resistance to the ...