Fault slip envelope: a new parametric investigation tool for fault slip based on geomechanics and 3-D fault geometry

International audience By combining a 3-D boundary element model, frictional slip theory, and fast computation method, we propose a new tool to improve fault slip analysis that allows the user to analyze a very large number of scenarios of stress and fault mechanical property variations through spac...

Full description

Bibliographic Details
Published in:Solid Earth
Main Authors: Soliva, Roger, Maerten, Frantz, Maerten, Laurent, Mattila, Jussi
Other Authors: Géosciences Montpellier, Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA), Schlumberger, Geological Survey of Finland = Geologian tutkimuskeskus tuottaa (GKT)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2019
Subjects:
Online Access:https://hal.umontpellier.fr/hal-02279248
https://hal.umontpellier.fr/hal-02279248/document
https://hal.umontpellier.fr/hal-02279248/file/se-10-1141-2019.pdf
https://doi.org/10.5194/se-10-1141-2019
id ftunimontpellier:oai:HAL:hal-02279248v1
record_format openpolar
spelling ftunimontpellier:oai:HAL:hal-02279248v1 2023-06-11T04:12:53+02:00 Fault slip envelope: a new parametric investigation tool for fault slip based on geomechanics and 3-D fault geometry Soliva, Roger Maerten, Frantz Maerten, Laurent Mattila, Jussi Géosciences Montpellier Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA) Schlumberger Geological Survey of Finland = Geologian tutkimuskeskus tuottaa (GKT) 2019 https://hal.umontpellier.fr/hal-02279248 https://hal.umontpellier.fr/hal-02279248/document https://hal.umontpellier.fr/hal-02279248/file/se-10-1141-2019.pdf https://doi.org/10.5194/se-10-1141-2019 en eng HAL CCSD European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/se-10-1141-2019 hal-02279248 https://hal.umontpellier.fr/hal-02279248 https://hal.umontpellier.fr/hal-02279248/document https://hal.umontpellier.fr/hal-02279248/file/se-10-1141-2019.pdf doi:10.5194/se-10-1141-2019 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1869-9510 EISSN: 1869-9529 Solid Earth https://hal.umontpellier.fr/hal-02279248 Solid Earth, 2019, 10 (4), pp.1141-1154. ⟨10.5194/se-10-1141-2019⟩ [SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] info:eu-repo/semantics/article Journal articles 2019 ftunimontpellier https://doi.org/10.5194/se-10-1141-2019 2023-05-02T22:42:15Z International audience By combining a 3-D boundary element model, frictional slip theory, and fast computation method, we propose a new tool to improve fault slip analysis that allows the user to analyze a very large number of scenarios of stress and fault mechanical property variations through space and time. Using both synthetic and real fault system geometries, we analyze a very large number of numerical simulations (125 000) using a fast iterative method to define for the first time macroscopic rupture envelopes for fault systems, referred to as "fault slip envelopes". Fault slip envelopes are defined using variable friction, cohesion, and stress state, and their shape is directly related to the fault system 3-D geometry and the friction coefficient on fault surfaces. The obtained fault slip envelopes show that very complex fault geometry implies low and isotropic strength of the fault system compared to geometry having limited fault orientations relative to the remote stresses, providing strong strength anisotropy. This technique is applied to the realistic geological conditions of the Olkiluoto high-level nuclear waste repository (Finland). The model results suggest that the Olkiluoto fault system has a better ability to slip under the present-day An-dersonian thrust stress regime than for the strike-slip and normal stress regimes expected in the future due to the probable presence of an ice sheet. This new tool allows the user to quantify the anisotropy of strength of 3-D real fault networks as a function of a wide range of possible geological conditions and mechanical properties. This can be useful to define the most conservative fault slip hazard case or to account for potential uncertainties in the input data for slip. This technique therefore applies to earthquake hazard studies, geological storage, geothermal resources along faults, and fault leaks or seals in geological reservoirs. Article in Journal/Newspaper Ice Sheet Université de Montpellier: HAL Solid Earth 10 4 1141 1154
institution Open Polar
collection Université de Montpellier: HAL
op_collection_id ftunimontpellier
language English
topic [SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]
spellingShingle [SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]
Soliva, Roger
Maerten, Frantz
Maerten, Laurent
Mattila, Jussi
Fault slip envelope: a new parametric investigation tool for fault slip based on geomechanics and 3-D fault geometry
topic_facet [SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]
description International audience By combining a 3-D boundary element model, frictional slip theory, and fast computation method, we propose a new tool to improve fault slip analysis that allows the user to analyze a very large number of scenarios of stress and fault mechanical property variations through space and time. Using both synthetic and real fault system geometries, we analyze a very large number of numerical simulations (125 000) using a fast iterative method to define for the first time macroscopic rupture envelopes for fault systems, referred to as "fault slip envelopes". Fault slip envelopes are defined using variable friction, cohesion, and stress state, and their shape is directly related to the fault system 3-D geometry and the friction coefficient on fault surfaces. The obtained fault slip envelopes show that very complex fault geometry implies low and isotropic strength of the fault system compared to geometry having limited fault orientations relative to the remote stresses, providing strong strength anisotropy. This technique is applied to the realistic geological conditions of the Olkiluoto high-level nuclear waste repository (Finland). The model results suggest that the Olkiluoto fault system has a better ability to slip under the present-day An-dersonian thrust stress regime than for the strike-slip and normal stress regimes expected in the future due to the probable presence of an ice sheet. This new tool allows the user to quantify the anisotropy of strength of 3-D real fault networks as a function of a wide range of possible geological conditions and mechanical properties. This can be useful to define the most conservative fault slip hazard case or to account for potential uncertainties in the input data for slip. This technique therefore applies to earthquake hazard studies, geological storage, geothermal resources along faults, and fault leaks or seals in geological reservoirs.
author2 Géosciences Montpellier
Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA)
Schlumberger
Geological Survey of Finland = Geologian tutkimuskeskus tuottaa (GKT)
format Article in Journal/Newspaper
author Soliva, Roger
Maerten, Frantz
Maerten, Laurent
Mattila, Jussi
author_facet Soliva, Roger
Maerten, Frantz
Maerten, Laurent
Mattila, Jussi
author_sort Soliva, Roger
title Fault slip envelope: a new parametric investigation tool for fault slip based on geomechanics and 3-D fault geometry
title_short Fault slip envelope: a new parametric investigation tool for fault slip based on geomechanics and 3-D fault geometry
title_full Fault slip envelope: a new parametric investigation tool for fault slip based on geomechanics and 3-D fault geometry
title_fullStr Fault slip envelope: a new parametric investigation tool for fault slip based on geomechanics and 3-D fault geometry
title_full_unstemmed Fault slip envelope: a new parametric investigation tool for fault slip based on geomechanics and 3-D fault geometry
title_sort fault slip envelope: a new parametric investigation tool for fault slip based on geomechanics and 3-d fault geometry
publisher HAL CCSD
publishDate 2019
url https://hal.umontpellier.fr/hal-02279248
https://hal.umontpellier.fr/hal-02279248/document
https://hal.umontpellier.fr/hal-02279248/file/se-10-1141-2019.pdf
https://doi.org/10.5194/se-10-1141-2019
genre Ice Sheet
genre_facet Ice Sheet
op_source ISSN: 1869-9510
EISSN: 1869-9529
Solid Earth
https://hal.umontpellier.fr/hal-02279248
Solid Earth, 2019, 10 (4), pp.1141-1154. ⟨10.5194/se-10-1141-2019⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/se-10-1141-2019
hal-02279248
https://hal.umontpellier.fr/hal-02279248
https://hal.umontpellier.fr/hal-02279248/document
https://hal.umontpellier.fr/hal-02279248/file/se-10-1141-2019.pdf
doi:10.5194/se-10-1141-2019
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/se-10-1141-2019
container_title Solid Earth
container_volume 10
container_issue 4
container_start_page 1141
op_container_end_page 1154
_version_ 1768389028051156992