Adaptive Tolerance to Ocean Acidification in the Marine Sponge: Chondrilla nucula

The dramatic increase in atmospheric carbon dioxide since the Industrial Revolution has led to a 30% increase in ocean acidification over pre-industrial levels. Although most ocean acidification research thus far has focused on calcifying organisms such as corals, the potential of this increase in a...

Full description

Bibliographic Details
Main Author: Lee, Sylvester
Format: Text
Language:unknown
Published: eGrove 2012
Subjects:
Online Access:https://egrove.olemiss.edu/etd/1333
https://egrove.olemiss.edu/cgi/viewcontent.cgi?article=2332&context=etd
Description
Summary:The dramatic increase in atmospheric carbon dioxide since the Industrial Revolution has led to a 30% increase in ocean acidification over pre-industrial levels. Although most ocean acidification research thus far has focused on calcifying organisms such as corals, the potential of this increase in acidity (H+ ions) to cause acid-base imbalances in soft-bodied animals such as sponges has been grossly overlooked. Furthermore, many studies on ocean acidification have not considered the elevated temperatures that are predicted to accompany future climate change conditions. Sponges are crucial components to coral reef systems, providing food, nutrients, structure, and support. The sponge Chondrilla nucula is a commember of Caribbean coral reef communities, and is occasionally found in conditions exhibiting natural environmental hypercapnia, such as caves and dark portions of mangroves. We sought to test the hypothesis that such acclimation to acidic conditions in situ translates to a degree of tolerance to simulated near-future conditions of ocean acidification under laboratory conditions. In the summer of 2011, we conducted two experiments in the Exuma Cays, Bahamas, assessing the ability of Chondrilla nucula to adapt to “acidified”conditions. The first experiment examined sponges transplanted from a shallow reef site into a cave site (“Cave Hole”of variable pH (=8.2-7.7)), the reef immediately outside the cave (“Cave Reef ”(pH=8.2)), and back-transplanted to the reef of origin (“Control Site”(pH=8.2)). Non-polar lipid fraction ratios increased significantly at the Cave Hole and Control sites, but not at the Cave Reef site. However, total lipids increased at the Cave Reef site, while remaining unchanged at the Cave Hole and Control sites. Fluorescent yield, chlorophyll a, soluble protein, carbohydrate, refractory material, ash, and total energetic content were unchanged across the treatment sites, suggesting some acclimation to acidified conditions in the Cave Hole sponges after 2 months. In a second experiment, we ...