l-distance-balanced graphs

Graf ▫$Gamma$▫ je razdaljno uravnotežen, če v njem za poljuben par sosednjih vozlišč ▫$u$▫ in ▫$v$▫ velja, da je število vozlišč grafa ▫$Gamma$▫, ki so bližje ▫$u$▫ kot ▫$v$▫, enako številu vozlišč grafa ▫$Gamma$▫, ki so bližje ▫$v$▫ kot ▫$u$▫. Ti grafi so sicer zanimivi že sami po sebi, v okviru te...

Full description

Bibliographic Details
Published in:Discrete Applied Mathematics
Main Authors: Miklavič, Štefko, Šparl, Primož
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2021
Subjects:
Online Access:https://repozitorij.uni-lj.si/IzpisGradiva.php?id=125780
https://repozitorij.uni-lj.si/Dokument.php?id=141642&dn=
https://plus.si.cobiss.net/opac7/bib/1540239812?lang=sl
id ftuniljubljanair:oai:repozitorij.uni-lj.si:IzpisGradiva.php-id-125780
record_format openpolar
spelling ftuniljubljanair:oai:repozitorij.uni-lj.si:IzpisGradiva.php-id-125780 2023-05-15T18:14:04+02:00 l-distance-balanced graphs l-razdaljno uravnoteženi grafi Miklavič, Štefko Šparl, Primož 2021-04-07 text/url https://repozitorij.uni-lj.si/IzpisGradiva.php?id=125780 https://repozitorij.uni-lj.si/Dokument.php?id=141642&dn= https://plus.si.cobiss.net/opac7/bib/1540239812?lang=sl eng eng Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2018.03.011 https://repozitorij.uni-lj.si/IzpisGradiva.php?id=125780 https://repozitorij.uni-lj.si/Dokument.php?id=141642&dn= https://plus.si.cobiss.net/opac7/bib/1540239812?lang=sl info:eu-repo/semantics/openAccess Discrete applied mathematics, no. 244, pp. 143-154, 2018. ISSN: 0166-218X distance-balanced l-distance-balanced highly distance-balanced info:eu-repo/classification/udc/519.17 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2021 ftuniljubljanair https://doi.org/10.1016/j.dam.2018.03.011 2021-12-06T09:34:41Z Graf ▫$Gamma$▫ je razdaljno uravnotežen, če v njem za poljuben par sosednjih vozlišč ▫$u$▫ in ▫$v$▫ velja, da je število vozlišč grafa ▫$Gamma$▫, ki so bližje ▫$u$▫ kot ▫$v$▫, enako številu vozlišč grafa ▫$Gamma$▫, ki so bližje ▫$v$▫ kot ▫$u$▫. Ti grafi so sicer zanimivi že sami po sebi, v okviru teorije grafov, pomembni pa so tudi zaradi možnosti uporabe na drugih področjih, kot sta na primer matematična kemija in teorija komunikacijskih omrežij. V članku se posvetimo naravni posplošitvi koncepta razdaljne uravnoteženosti, ki jo le leta 2014 vpeljal Boštjan Frelih. Pravimo, da je graf ▫$Gamma$▫ ▫$ell$▫-razdaljno uravnotežen, če za poljuben par vozlišč ▫$u$▫ in ▫$v$▫ na razdalji ▫$ell$▫ v grafu ▫$Gamma$▫ velja, da je število vozlišč grafa ▫$Gamma$▫, ki so bližje ▫$u$▫ kot ▫$v$▫, enako številu vozlišč grafa ▫$Gamma$▫, ki so bližje ▫$v$▫ kot ▫$u$▫. V članku pokažemo nekaj splošnih lastnosti takšnih grafov in konstruiramo vrsto različnih primerov. Posebej se posvetimo grafom premera največ 3 in študiramo lastnost ▫$ell$▫-razdaljne uravnoteženosti v kubičnih grafih. Med drugim se posvetimo tej lastnosti v dobro znanih posplošenih Petersenovih grafih. A graph ▫$varGamma$▫ is distance-balanced if for each pair ▫$u$▫, ▫$v$▫ of adjacent vertices of ▫$varGamma$▫ the number of vertices closer to ▫$u$▫ than to ▫$v$▫ is equal to the number of vertices closer to ▫$v$▫ than to ▫$u$▫. Apart from the interest in these graphs from the graph theoretical point of view they have applications in other areas of research, for instance in mathematical chemistry and communication networks, and have thus been studied from various different points of view in the literature. In this paper we study a very natural generalization of the concept of distance-balancedness, introduced by B. Frelih. Let ▫$ell$▫ denote a positive integer. A connected graph ▫$varGamma$▫ of diameter at least ▫$ell$▫ is said to be ▫$ell$▫ distance-balanced whenever for any pair of vertices ▫$u$▫, ▫$v$▫ of ▫$varGamma$▫ at distance ▫$ell$▫, the number of vertices closer to ▫$u$▫ than to ▫$v$▫ is equal to the number of vertices closer to ▫$v$▫ than to ▫$u$▫. We obtain some general results on ▫$ell$▫-distance-balanced graphs and provide various examples. We study those of diameter at most 3 in more detail and investigate the ▫$ell$▫-distance-balancedness property of cubic graphs. In particular, we analyze this property for the generalized Petersen graphs. Article in Journal/Newspaper sami Repository of the University of Ljubljana (RUL) Petersen ENVELOPE(-101.250,-101.250,-71.917,-71.917) Discrete Applied Mathematics 244 143 154
institution Open Polar
collection Repository of the University of Ljubljana (RUL)
op_collection_id ftuniljubljanair
language English
topic distance-balanced
l-distance-balanced
highly distance-balanced
info:eu-repo/classification/udc/519.17
spellingShingle distance-balanced
l-distance-balanced
highly distance-balanced
info:eu-repo/classification/udc/519.17
Miklavič, Štefko
Šparl, Primož
l-distance-balanced graphs
topic_facet distance-balanced
l-distance-balanced
highly distance-balanced
info:eu-repo/classification/udc/519.17
description Graf ▫$Gamma$▫ je razdaljno uravnotežen, če v njem za poljuben par sosednjih vozlišč ▫$u$▫ in ▫$v$▫ velja, da je število vozlišč grafa ▫$Gamma$▫, ki so bližje ▫$u$▫ kot ▫$v$▫, enako številu vozlišč grafa ▫$Gamma$▫, ki so bližje ▫$v$▫ kot ▫$u$▫. Ti grafi so sicer zanimivi že sami po sebi, v okviru teorije grafov, pomembni pa so tudi zaradi možnosti uporabe na drugih področjih, kot sta na primer matematična kemija in teorija komunikacijskih omrežij. V članku se posvetimo naravni posplošitvi koncepta razdaljne uravnoteženosti, ki jo le leta 2014 vpeljal Boštjan Frelih. Pravimo, da je graf ▫$Gamma$▫ ▫$ell$▫-razdaljno uravnotežen, če za poljuben par vozlišč ▫$u$▫ in ▫$v$▫ na razdalji ▫$ell$▫ v grafu ▫$Gamma$▫ velja, da je število vozlišč grafa ▫$Gamma$▫, ki so bližje ▫$u$▫ kot ▫$v$▫, enako številu vozlišč grafa ▫$Gamma$▫, ki so bližje ▫$v$▫ kot ▫$u$▫. V članku pokažemo nekaj splošnih lastnosti takšnih grafov in konstruiramo vrsto različnih primerov. Posebej se posvetimo grafom premera največ 3 in študiramo lastnost ▫$ell$▫-razdaljne uravnoteženosti v kubičnih grafih. Med drugim se posvetimo tej lastnosti v dobro znanih posplošenih Petersenovih grafih. A graph ▫$varGamma$▫ is distance-balanced if for each pair ▫$u$▫, ▫$v$▫ of adjacent vertices of ▫$varGamma$▫ the number of vertices closer to ▫$u$▫ than to ▫$v$▫ is equal to the number of vertices closer to ▫$v$▫ than to ▫$u$▫. Apart from the interest in these graphs from the graph theoretical point of view they have applications in other areas of research, for instance in mathematical chemistry and communication networks, and have thus been studied from various different points of view in the literature. In this paper we study a very natural generalization of the concept of distance-balancedness, introduced by B. Frelih. Let ▫$ell$▫ denote a positive integer. A connected graph ▫$varGamma$▫ of diameter at least ▫$ell$▫ is said to be ▫$ell$▫ distance-balanced whenever for any pair of vertices ▫$u$▫, ▫$v$▫ of ▫$varGamma$▫ at distance ▫$ell$▫, the number of vertices closer to ▫$u$▫ than to ▫$v$▫ is equal to the number of vertices closer to ▫$v$▫ than to ▫$u$▫. We obtain some general results on ▫$ell$▫-distance-balanced graphs and provide various examples. We study those of diameter at most 3 in more detail and investigate the ▫$ell$▫-distance-balancedness property of cubic graphs. In particular, we analyze this property for the generalized Petersen graphs.
format Article in Journal/Newspaper
author Miklavič, Štefko
Šparl, Primož
author_facet Miklavič, Štefko
Šparl, Primož
author_sort Miklavič, Štefko
title l-distance-balanced graphs
title_short l-distance-balanced graphs
title_full l-distance-balanced graphs
title_fullStr l-distance-balanced graphs
title_full_unstemmed l-distance-balanced graphs
title_sort l-distance-balanced graphs
publisher Elsevier
publishDate 2021
url https://repozitorij.uni-lj.si/IzpisGradiva.php?id=125780
https://repozitorij.uni-lj.si/Dokument.php?id=141642&dn=
https://plus.si.cobiss.net/opac7/bib/1540239812?lang=sl
long_lat ENVELOPE(-101.250,-101.250,-71.917,-71.917)
geographic Petersen
geographic_facet Petersen
genre sami
genre_facet sami
op_source Discrete applied mathematics, no. 244, pp. 143-154, 2018.
ISSN: 0166-218X
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2018.03.011
https://repozitorij.uni-lj.si/IzpisGradiva.php?id=125780
https://repozitorij.uni-lj.si/Dokument.php?id=141642&dn=
https://plus.si.cobiss.net/opac7/bib/1540239812?lang=sl
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1016/j.dam.2018.03.011
container_title Discrete Applied Mathematics
container_volume 244
container_start_page 143
op_container_end_page 154
_version_ 1766186766027456512