Calcium carbonate saturation states along the West Antarctic Peninsula

The waters along the West Antarctic Peninsula (WAP) have experienced warming and increased freshwater inputs from melting sea ice and glaciers in recent decades. Challenges exist in understanding the consequences of these changes on the inorganic carbon system in this ecologically important and high...

Full description

Bibliographic Details
Published in:Antarctic Science
Main Authors: Jones, Elizabeth M., Hoppema, Mario, Bakker, Karel, De Baar, Hein J.W.
Format: Article in Journal/Newspaper
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/11370/b86159c9-a908-49b2-86b2-186b343bf862
https://research.rug.nl/en/publications/b86159c9-a908-49b2-86b2-186b343bf862
https://doi.org/10.1017/S0954102021000456
https://pure.rug.nl/ws/files/205036425/calcium_carbonate_saturation_states_along_the_west_antarctic_peninsula.pdf
http://www.scopus.com/inward/record.url?scp=85118498335&partnerID=8YFLogxK
Description
Summary:The waters along the West Antarctic Peninsula (WAP) have experienced warming and increased freshwater inputs from melting sea ice and glaciers in recent decades. Challenges exist in understanding the consequences of these changes on the inorganic carbon system in this ecologically important and highly productive ecosystem. Distributions of dissolved inorganic carbon (CT), total alkalinity (AT) and nutrients revealed key physical, biological and biogeochemical controls of the calcium carbonate saturation state (ωaragonite) in different water masses across the WAP shelf during the summer. Biological production in spring and summer dominated changes in surface water ωaragonite (Δωaragonite up to +1.39; ∼90%) relative to underlying Winter Water. Sea-ice and glacial meltwater constituted a minor source of AT that increased surface water ωaragonite (Δωaragonite up to +0.07; ∼13%). Remineralization of organic matter and an influx of carbon-rich brines led to cross-shelf decreases in ωaragonite in Winter Water and Circumpolar Deep Water. A strong biological carbon pump over the shelf created ωaragonite oversaturation in surface waters and suppression of ωaragonite in subsurface waters. Undersaturation of aragonite occurred at < ∼1000 m. Ongoing changes along the WAP will impact the biologically driven and meltwater-driven processes that influence the vulnerability of shelf waters to calcium carbonate undersaturation in the future.