Macronutrient and carbon supply, uptake and cycling across the Antarctic Peninsi shelf during summer

The West Antarctic Peninsula shelf is a region of high seasonal primary production which supports a large and productive food web, where macronutrients and inorganic carbon are sourced primarily from intrusions of warm saline Circumpolar Deep Water, We examined the cross-shelf modification of this w...

Full description

Bibliographic Details
Published in:Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Main Authors: Henley, Sian F., Jones, Elizabeth M., Venables, Hugh J., Meredith, Michael P., Firing, Yvonne L., Dittrich, Ribanna, Heiser, Sabrina, Stefels, Jacqueline, Dougans, Julie
Format: Article in Journal/Newspaper
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/11370/9921fdbd-7a74-4814-93e6-091037450e0b
https://research.rug.nl/en/publications/9921fdbd-7a74-4814-93e6-091037450e0b
https://doi.org/10.1098/rsta.2017.0168
https://pure.rug.nl/ws/files/64306838/20170168.full.pdf
Description
Summary:The West Antarctic Peninsula shelf is a region of high seasonal primary production which supports a large and productive food web, where macronutrients and inorganic carbon are sourced primarily from intrusions of warm saline Circumpolar Deep Water, We examined the cross-shelf modification of this water mass during mid-summer 2015 to understand the supply of nutrients and carbon to the productive surface ocean, and their subsequent uptake and cycling. We show that nitrate, phosphate, silicic acid and inorganic carbon are progressively enriched in subsurface waters across the shelf, contrary to cross-shelf reductions in heat, salinity and density. We use nutrient stoichiometric and isotopic approaches to invoke remineralization of organic matter, including nitrification below the euphotic surface layer, and dissolution of biogenic silica in deeper waters and potentially shelf sediment porewaters, as the primary drivers of cross-shelf enrichments. Regenerated nitrate and phosphate account for a significant proportion of the total pools of these nutrients in the upper ocean, with implications for the seasonal carbon sink. Understanding nutrient and carbon dynamics in this region now will inform predictions of future biogeochemical changes in the context of substantial variability and ongoing changes in the physical environment. This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'.