Atmospheric boundary layers in Antarctica : observation and numerical simulation

Except during a few summer afternoon hours, the snow-covered surface of Antarctica is constantly cooling because of radiative processes. This results in a stable, persisting stratification of the atmospheric boundary layer that feeds katabatic winds along the slopes descending from the Plateau to th...

Full description

Bibliographic Details
Main Author: Barral, Hélène
Other Authors: Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Grenoble, Christophe Genthon, Christophe Brun
Format: Doctoral or Postdoctoral Thesis
Language:French
Published: HAL CCSD 2014
Subjects:
Online Access:https://theses.hal.science/tel-01228081
https://theses.hal.science/tel-01228081/document
https://theses.hal.science/tel-01228081/file/BARRAL_2014_archivage.pdf
id ftunigrenoble:oai:HAL:tel-01228081v1
record_format openpolar
institution Open Polar
collection Université Grenoble Alpes: HAL
op_collection_id ftunigrenoble
language French
topic Antarctica
Stable boundary layers
Turbulence
Katabatic wind
Numerical Modelling
Observations
Antarctique
Couches limites stables
Vent catabatique
Modélisation numérique
Observation
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
spellingShingle Antarctica
Stable boundary layers
Turbulence
Katabatic wind
Numerical Modelling
Observations
Antarctique
Couches limites stables
Vent catabatique
Modélisation numérique
Observation
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
Barral, Hélène
Atmospheric boundary layers in Antarctica : observation and numerical simulation
topic_facet Antarctica
Stable boundary layers
Turbulence
Katabatic wind
Numerical Modelling
Observations
Antarctique
Couches limites stables
Vent catabatique
Modélisation numérique
Observation
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
description Except during a few summer afternoon hours, the snow-covered surface of Antarctica is constantly cooling because of radiative processes. This results in a stable, persisting stratification of the atmospheric boundary layer that feeds katabatic winds along the slopes descending from the Plateau to the Ocean. Temperature inversions and wind speeds both peak during the winter, with inversions regularly reaching 25 degrees (C) over the Plateau and winds exceeding 200,km/h along the coast. In the summer, significant inversions remain at night but solar heating leads to the formation of convective layers near the surface in the afternoon. With berms and large, empty slopes constantly covered with snow, Antarctica is a unique and perfect laboratory for the study of transitions between turbulent regimes and of the turbulence within stable and katabatic boundary layers. The investigation of these processes is usually made difficult by their sensitivity to heterogeneities at the surface. This thesis work documents three typical "text-book" summer cases: the diurnal cycle on the Antarctic Plateau, the generation of a local katabatic wind and the katabatic forcing of the boundary layer. The investigation of these three cases uses in-situ data. For two of these cases, the observational data has fed and been completed with some Meso-NH model simulation outputs. The first case focusses on the diurnal cycle at Dome C. On the Antarctic Plateau, Dome C is a flat, homogeneous area far from oceanic perturbations. Since a few years, a 45 meters tower samples the boundary layer there. In the summer, the diurnal cycle there is characterized by clean signals in both temperature and winds, with a nocturnal low-level jet within the boundary layer. A two-days data set representative of the rest of the summer has been selected for analysis and is used in the GABLS4 comparison study prepared in collaboration with Meteo France. Single-column simulations have been run for this comparison work launched in June. The second case examines a local ...
author2 Laboratoire de glaciologie et géophysique de l'environnement (LGGE)
Observatoire des Sciences de l'Univers de Grenoble (OSUG)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Université de Grenoble
Christophe Genthon
Christophe Brun
format Doctoral or Postdoctoral Thesis
author Barral, Hélène
author_facet Barral, Hélène
author_sort Barral, Hélène
title Atmospheric boundary layers in Antarctica : observation and numerical simulation
title_short Atmospheric boundary layers in Antarctica : observation and numerical simulation
title_full Atmospheric boundary layers in Antarctica : observation and numerical simulation
title_fullStr Atmospheric boundary layers in Antarctica : observation and numerical simulation
title_full_unstemmed Atmospheric boundary layers in Antarctica : observation and numerical simulation
title_sort atmospheric boundary layers in antarctica : observation and numerical simulation
publisher HAL CCSD
publishDate 2014
url https://theses.hal.science/tel-01228081
https://theses.hal.science/tel-01228081/document
https://theses.hal.science/tel-01228081/file/BARRAL_2014_archivage.pdf
geographic Antarctic
The Antarctic
geographic_facet Antarctic
The Antarctic
genre Antarc*
Antarctic
Antarctica
Antarctique*
genre_facet Antarc*
Antarctic
Antarctica
Antarctique*
op_source https://theses.hal.science/tel-01228081
Océan, Atmosphère. Université de Grenoble, 2014. Français. ⟨NNT : 2014GRENU053⟩
op_relation NNT: 2014GRENU053
tel-01228081
https://theses.hal.science/tel-01228081
https://theses.hal.science/tel-01228081/document
https://theses.hal.science/tel-01228081/file/BARRAL_2014_archivage.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1798836084039221248
spelling ftunigrenoble:oai:HAL:tel-01228081v1 2024-05-12T07:56:08+00:00 Atmospheric boundary layers in Antarctica : observation and numerical simulation Couches limites atmosphériques en Antarctique : observation et simulation numérique Barral, Hélène Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) Université de Grenoble Christophe Genthon Christophe Brun 2014-11-26 https://theses.hal.science/tel-01228081 https://theses.hal.science/tel-01228081/document https://theses.hal.science/tel-01228081/file/BARRAL_2014_archivage.pdf fr fre HAL CCSD NNT: 2014GRENU053 tel-01228081 https://theses.hal.science/tel-01228081 https://theses.hal.science/tel-01228081/document https://theses.hal.science/tel-01228081/file/BARRAL_2014_archivage.pdf info:eu-repo/semantics/OpenAccess https://theses.hal.science/tel-01228081 Océan, Atmosphère. Université de Grenoble, 2014. Français. ⟨NNT : 2014GRENU053⟩ Antarctica Stable boundary layers Turbulence Katabatic wind Numerical Modelling Observations Antarctique Couches limites stables Vent catabatique Modélisation numérique Observation [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere info:eu-repo/semantics/doctoralThesis Theses 2014 ftunigrenoble 2024-04-18T04:23:25Z Except during a few summer afternoon hours, the snow-covered surface of Antarctica is constantly cooling because of radiative processes. This results in a stable, persisting stratification of the atmospheric boundary layer that feeds katabatic winds along the slopes descending from the Plateau to the Ocean. Temperature inversions and wind speeds both peak during the winter, with inversions regularly reaching 25 degrees (C) over the Plateau and winds exceeding 200,km/h along the coast. In the summer, significant inversions remain at night but solar heating leads to the formation of convective layers near the surface in the afternoon. With berms and large, empty slopes constantly covered with snow, Antarctica is a unique and perfect laboratory for the study of transitions between turbulent regimes and of the turbulence within stable and katabatic boundary layers. The investigation of these processes is usually made difficult by their sensitivity to heterogeneities at the surface. This thesis work documents three typical "text-book" summer cases: the diurnal cycle on the Antarctic Plateau, the generation of a local katabatic wind and the katabatic forcing of the boundary layer. The investigation of these three cases uses in-situ data. For two of these cases, the observational data has fed and been completed with some Meso-NH model simulation outputs. The first case focusses on the diurnal cycle at Dome C. On the Antarctic Plateau, Dome C is a flat, homogeneous area far from oceanic perturbations. Since a few years, a 45 meters tower samples the boundary layer there. In the summer, the diurnal cycle there is characterized by clean signals in both temperature and winds, with a nocturnal low-level jet within the boundary layer. A two-days data set representative of the rest of the summer has been selected for analysis and is used in the GABLS4 comparison study prepared in collaboration with Meteo France. Single-column simulations have been run for this comparison work launched in June. The second case examines a local ... Doctoral or Postdoctoral Thesis Antarc* Antarctic Antarctica Antarctique* Université Grenoble Alpes: HAL Antarctic The Antarctic