The Microwave Snow Grain Size: A New Concept to Predict Satellite Observations Over Snow-Covered Regions

International audience Satellite observations of snow-covered regions in the microwave range have the potential to retrieve essential climate variables such as snow height. This requires a precise understanding of how microwave scattering is linked to snow microstructural properties (density, grain...

Full description

Bibliographic Details
Published in:AGU Advances
Main Authors: Picard, G., Löwe, H., Domine, F., Arnaud, L., Larue, F., Favier, V., Le Meur, E., Lefebvre, E., Savarino, J., Royer, A.
Other Authors: Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Takuvik Joint International Laboratory ULAVAL-CNRS, Université Laval Québec (ULaval)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE01-0011,EAIIST,Projet International d'exploration de la calotte polaire de l'Antarctique de l'Est(2016)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://insu.hal.science/insu-03859272
https://insu.hal.science/insu-03859272/document
https://insu.hal.science/insu-03859272/file/Picard-2022-The_microwave_snow_grain_size-%28published_version%29.pdf
https://doi.org/10.1029/2021AV000630
id ftunigrenoble:oai:HAL:insu-03859272v1
record_format openpolar
spelling ftunigrenoble:oai:HAL:insu-03859272v1 2024-05-12T07:55:30+00:00 The Microwave Snow Grain Size: A New Concept to Predict Satellite Observations Over Snow-Covered Regions Picard, G. Löwe, H. Domine, F. Arnaud, L. Larue, F. Favier, V. Le Meur, E. Lefebvre, E. Savarino, J. Royer, A. Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) Takuvik Joint International Laboratory ULAVAL-CNRS Université Laval Québec (ULaval)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) ANR-16-CE01-0011,EAIIST,Projet International d'exploration de la calotte polaire de l'Antarctique de l'Est(2016) 2022 https://insu.hal.science/insu-03859272 https://insu.hal.science/insu-03859272/document https://insu.hal.science/insu-03859272/file/Picard-2022-The_microwave_snow_grain_size-%28published_version%29.pdf https://doi.org/10.1029/2021AV000630 en eng HAL CCSD info:eu-repo/semantics/altIdentifier/doi/10.1029/2021AV000630 insu-03859272 https://insu.hal.science/insu-03859272 https://insu.hal.science/insu-03859272/document https://insu.hal.science/insu-03859272/file/Picard-2022-The_microwave_snow_grain_size-%28published_version%29.pdf BIBCODE: 2022AGUA.300630P doi:10.1029/2021AV000630 http://creativecommons.org/licenses/by-nc-nd/ info:eu-repo/semantics/OpenAccess ISSN: 2576-604X EISSN: 2576-604X AGU Advances https://insu.hal.science/insu-03859272 AGU Advances, 2022, 3, ⟨10.1029/2021AV000630⟩ snow remote sensing microwave porous media microstructure modeling [SDU]Sciences of the Universe [physics] [SDU.STU]Sciences of the Universe [physics]/Earth Sciences info:eu-repo/semantics/article Journal articles 2022 ftunigrenoble https://doi.org/10.1029/2021AV000630 2024-04-18T02:59:14Z International audience Satellite observations of snow-covered regions in the microwave range have the potential to retrieve essential climate variables such as snow height. This requires a precise understanding of how microwave scattering is linked to snow microstructural properties (density, grain size, grain shape and arrangement). This link has so far relied on empirical adjustments of the theories, precluding the development of robust retrieval algorithms. Here we solve this problem by introducing a new microstructural parameter able to consistently predict scattering. This "microwave grain size" is demonstrated to be proportional to the measurable optical grain size and to a new factor describing the chord length dispersion in the microstructure, a geometrical property known as polydispersity. By assuming that the polydispersity depends on the snow grain type only, we retrieve its value for rounded and faceted grains by optimization of microwave satellite observations in 18 Antarctic sites, and for depth hoar in 86 Canadian sites using ground-based observations. The value for the convex grains (0.6) compares favorably to the polydispersity calculated from 3D micro-computed tomography images for alpine grains, while values for depth hoar show wider variations (1.2-1.9) and are larger in Canada than in the Alps. Nevertheless, using one value for each grain type, the microwave observations in Antarctica and in Canada can be simulated from in-situ measurements with good accuracy with a fully physical model. These findings improve snow scattering modeling, enabling future more accurate uses of satellite observations in snow hydrological and meteorological applications. Article in Journal/Newspaper Antarc* Antarctic Antarctica Université Grenoble Alpes: HAL Antarctic Canada AGU Advances 3 4
institution Open Polar
collection Université Grenoble Alpes: HAL
op_collection_id ftunigrenoble
language English
topic snow
remote sensing
microwave
porous media
microstructure
modeling
[SDU]Sciences of the Universe [physics]
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
spellingShingle snow
remote sensing
microwave
porous media
microstructure
modeling
[SDU]Sciences of the Universe [physics]
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
Picard, G.
Löwe, H.
Domine, F.
Arnaud, L.
Larue, F.
Favier, V.
Le Meur, E.
Lefebvre, E.
Savarino, J.
Royer, A.
The Microwave Snow Grain Size: A New Concept to Predict Satellite Observations Over Snow-Covered Regions
topic_facet snow
remote sensing
microwave
porous media
microstructure
modeling
[SDU]Sciences of the Universe [physics]
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
description International audience Satellite observations of snow-covered regions in the microwave range have the potential to retrieve essential climate variables such as snow height. This requires a precise understanding of how microwave scattering is linked to snow microstructural properties (density, grain size, grain shape and arrangement). This link has so far relied on empirical adjustments of the theories, precluding the development of robust retrieval algorithms. Here we solve this problem by introducing a new microstructural parameter able to consistently predict scattering. This "microwave grain size" is demonstrated to be proportional to the measurable optical grain size and to a new factor describing the chord length dispersion in the microstructure, a geometrical property known as polydispersity. By assuming that the polydispersity depends on the snow grain type only, we retrieve its value for rounded and faceted grains by optimization of microwave satellite observations in 18 Antarctic sites, and for depth hoar in 86 Canadian sites using ground-based observations. The value for the convex grains (0.6) compares favorably to the polydispersity calculated from 3D micro-computed tomography images for alpine grains, while values for depth hoar show wider variations (1.2-1.9) and are larger in Canada than in the Alps. Nevertheless, using one value for each grain type, the microwave observations in Antarctica and in Canada can be simulated from in-situ measurements with good accuracy with a fully physical model. These findings improve snow scattering modeling, enabling future more accurate uses of satellite observations in snow hydrological and meteorological applications.
author2 Institut des Géosciences de l’Environnement (IGE)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
Takuvik Joint International Laboratory ULAVAL-CNRS
Université Laval Québec (ULaval)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
ANR-16-CE01-0011,EAIIST,Projet International d'exploration de la calotte polaire de l'Antarctique de l'Est(2016)
format Article in Journal/Newspaper
author Picard, G.
Löwe, H.
Domine, F.
Arnaud, L.
Larue, F.
Favier, V.
Le Meur, E.
Lefebvre, E.
Savarino, J.
Royer, A.
author_facet Picard, G.
Löwe, H.
Domine, F.
Arnaud, L.
Larue, F.
Favier, V.
Le Meur, E.
Lefebvre, E.
Savarino, J.
Royer, A.
author_sort Picard, G.
title The Microwave Snow Grain Size: A New Concept to Predict Satellite Observations Over Snow-Covered Regions
title_short The Microwave Snow Grain Size: A New Concept to Predict Satellite Observations Over Snow-Covered Regions
title_full The Microwave Snow Grain Size: A New Concept to Predict Satellite Observations Over Snow-Covered Regions
title_fullStr The Microwave Snow Grain Size: A New Concept to Predict Satellite Observations Over Snow-Covered Regions
title_full_unstemmed The Microwave Snow Grain Size: A New Concept to Predict Satellite Observations Over Snow-Covered Regions
title_sort microwave snow grain size: a new concept to predict satellite observations over snow-covered regions
publisher HAL CCSD
publishDate 2022
url https://insu.hal.science/insu-03859272
https://insu.hal.science/insu-03859272/document
https://insu.hal.science/insu-03859272/file/Picard-2022-The_microwave_snow_grain_size-%28published_version%29.pdf
https://doi.org/10.1029/2021AV000630
geographic Antarctic
Canada
geographic_facet Antarctic
Canada
genre Antarc*
Antarctic
Antarctica
genre_facet Antarc*
Antarctic
Antarctica
op_source ISSN: 2576-604X
EISSN: 2576-604X
AGU Advances
https://insu.hal.science/insu-03859272
AGU Advances, 2022, 3, ⟨10.1029/2021AV000630⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1029/2021AV000630
insu-03859272
https://insu.hal.science/insu-03859272
https://insu.hal.science/insu-03859272/document
https://insu.hal.science/insu-03859272/file/Picard-2022-The_microwave_snow_grain_size-%28published_version%29.pdf
BIBCODE: 2022AGUA.300630P
doi:10.1029/2021AV000630
op_rights http://creativecommons.org/licenses/by-nc-nd/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1029/2021AV000630
container_title AGU Advances
container_volume 3
container_issue 4
_version_ 1798835298110537728