Surface melt on the Shackleton Ice Shelf, East Antarctica (2003-2021)
International audience Melt on the surface of Antarctic ice shelves can potentially lead to their disintegration, accelerating the flow of grounded ice to the ocean and raising global sea levels. However, the current understanding of the processes driving surface melt is incomplete, increasing uncer...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , |
Other Authors: | , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2022
|
Subjects: | |
Online Access: | https://insu.hal.science/insu-03859252 https://insu.hal.science/insu-03859252/document https://insu.hal.science/insu-03859252/file/tc-16-4553-2022.pdf https://doi.org/10.5194/tc-16-4553-2022 |
id |
ftunigrenoble:oai:HAL:insu-03859252v1 |
---|---|
record_format |
openpolar |
spelling |
ftunigrenoble:oai:HAL:insu-03859252v1 2024-05-12T07:56:26+00:00 Surface melt on the Shackleton Ice Shelf, East Antarctica (2003-2021) Saunderson, Dominic Mackintosh, Andrew Mccormack, Felicity Selwyn Jones, Richard Picard, Ghislain Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) 2022 https://insu.hal.science/insu-03859252 https://insu.hal.science/insu-03859252/document https://insu.hal.science/insu-03859252/file/tc-16-4553-2022.pdf https://doi.org/10.5194/tc-16-4553-2022 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-16-4553-2022 insu-03859252 https://insu.hal.science/insu-03859252 https://insu.hal.science/insu-03859252/document https://insu.hal.science/insu-03859252/file/tc-16-4553-2022.pdf BIBCODE: 2022TCry.16.4553S doi:10.5194/tc-16-4553-2022 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://insu.hal.science/insu-03859252 The Cryosphere, 2022, 16, pp.4553-4569. ⟨10.5194/tc-16-4553-2022⟩ [SDU]Sciences of the Universe [physics] [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography info:eu-repo/semantics/article Journal articles 2022 ftunigrenoble https://doi.org/10.5194/tc-16-4553-2022 2024-04-18T02:59:14Z International audience Melt on the surface of Antarctic ice shelves can potentially lead to their disintegration, accelerating the flow of grounded ice to the ocean and raising global sea levels. However, the current understanding of the processes driving surface melt is incomplete, increasing uncertainty in predictions of ice shelf stability and thus of Antarctica's contribution to sea-level rise. Previous studies of surface melt in Antarctica have usually focused on either a process-level understanding of melt through energy-balance investigations or used metrics such as the annual number of melt days to quantify spatiotemporal variability in satellite observations of surface melt. Here, we help bridge the gap between work at these two scales. Using daily passive microwave observations from the AMSR-E and AMSR-2 sensors and the machine learning approach of a self-organising map, we identify nine representative spatial distributions ("patterns") of surface melt on the Shackleton Ice Shelf in East Antarctica from 2002/03-2020/21. Combined with output from the RACMO2.3p3 regional climate model and surface topography from the REMA digital elevation model, our results point to a significant role for surface air temperatures in controlling the interannual variability in summer melt and also reveal the influence of localised controls on melt. In particular, prolonged melt along the grounding line shows the importance of katabatic winds and surface albedo. Our approach highlights the necessity of understanding both local and large-scale controls on surface melt and demonstrates that self-organising maps can be used to investigate the variability in surface melt on Antarctic ice shelves. Article in Journal/Newspaper Antarc* Antarctic Antarctica East Antarctica Ice Shelf Ice Shelves Shackleton Ice Shelf The Cryosphere Université Grenoble Alpes: HAL Antarctic East Antarctica Shackleton Shackleton Ice Shelf ENVELOPE(100.504,100.504,-65.996,-65.996) The Cryosphere 16 10 4553 4569 |
institution |
Open Polar |
collection |
Université Grenoble Alpes: HAL |
op_collection_id |
ftunigrenoble |
language |
English |
topic |
[SDU]Sciences of the Universe [physics] [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography |
spellingShingle |
[SDU]Sciences of the Universe [physics] [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography Saunderson, Dominic Mackintosh, Andrew Mccormack, Felicity Selwyn Jones, Richard Picard, Ghislain Surface melt on the Shackleton Ice Shelf, East Antarctica (2003-2021) |
topic_facet |
[SDU]Sciences of the Universe [physics] [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography |
description |
International audience Melt on the surface of Antarctic ice shelves can potentially lead to their disintegration, accelerating the flow of grounded ice to the ocean and raising global sea levels. However, the current understanding of the processes driving surface melt is incomplete, increasing uncertainty in predictions of ice shelf stability and thus of Antarctica's contribution to sea-level rise. Previous studies of surface melt in Antarctica have usually focused on either a process-level understanding of melt through energy-balance investigations or used metrics such as the annual number of melt days to quantify spatiotemporal variability in satellite observations of surface melt. Here, we help bridge the gap between work at these two scales. Using daily passive microwave observations from the AMSR-E and AMSR-2 sensors and the machine learning approach of a self-organising map, we identify nine representative spatial distributions ("patterns") of surface melt on the Shackleton Ice Shelf in East Antarctica from 2002/03-2020/21. Combined with output from the RACMO2.3p3 regional climate model and surface topography from the REMA digital elevation model, our results point to a significant role for surface air temperatures in controlling the interannual variability in summer melt and also reveal the influence of localised controls on melt. In particular, prolonged melt along the grounding line shows the importance of katabatic winds and surface albedo. Our approach highlights the necessity of understanding both local and large-scale controls on surface melt and demonstrates that self-organising maps can be used to investigate the variability in surface melt on Antarctic ice shelves. |
author2 |
Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) |
format |
Article in Journal/Newspaper |
author |
Saunderson, Dominic Mackintosh, Andrew Mccormack, Felicity Selwyn Jones, Richard Picard, Ghislain |
author_facet |
Saunderson, Dominic Mackintosh, Andrew Mccormack, Felicity Selwyn Jones, Richard Picard, Ghislain |
author_sort |
Saunderson, Dominic |
title |
Surface melt on the Shackleton Ice Shelf, East Antarctica (2003-2021) |
title_short |
Surface melt on the Shackleton Ice Shelf, East Antarctica (2003-2021) |
title_full |
Surface melt on the Shackleton Ice Shelf, East Antarctica (2003-2021) |
title_fullStr |
Surface melt on the Shackleton Ice Shelf, East Antarctica (2003-2021) |
title_full_unstemmed |
Surface melt on the Shackleton Ice Shelf, East Antarctica (2003-2021) |
title_sort |
surface melt on the shackleton ice shelf, east antarctica (2003-2021) |
publisher |
HAL CCSD |
publishDate |
2022 |
url |
https://insu.hal.science/insu-03859252 https://insu.hal.science/insu-03859252/document https://insu.hal.science/insu-03859252/file/tc-16-4553-2022.pdf https://doi.org/10.5194/tc-16-4553-2022 |
long_lat |
ENVELOPE(100.504,100.504,-65.996,-65.996) |
geographic |
Antarctic East Antarctica Shackleton Shackleton Ice Shelf |
geographic_facet |
Antarctic East Antarctica Shackleton Shackleton Ice Shelf |
genre |
Antarc* Antarctic Antarctica East Antarctica Ice Shelf Ice Shelves Shackleton Ice Shelf The Cryosphere |
genre_facet |
Antarc* Antarctic Antarctica East Antarctica Ice Shelf Ice Shelves Shackleton Ice Shelf The Cryosphere |
op_source |
ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://insu.hal.science/insu-03859252 The Cryosphere, 2022, 16, pp.4553-4569. ⟨10.5194/tc-16-4553-2022⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-16-4553-2022 insu-03859252 https://insu.hal.science/insu-03859252 https://insu.hal.science/insu-03859252/document https://insu.hal.science/insu-03859252/file/tc-16-4553-2022.pdf BIBCODE: 2022TCry.16.4553S doi:10.5194/tc-16-4553-2022 |
op_rights |
http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.5194/tc-16-4553-2022 |
container_title |
The Cryosphere |
container_volume |
16 |
container_issue |
10 |
container_start_page |
4553 |
op_container_end_page |
4569 |
_version_ |
1798836509920460800 |