Stochastic parameterizations of biogeochemical uncertainties in a 1/4° NEMO/PISCES model for probabilistic comparisons with ocean color data

International audience In spite of recent advances, biogeochemical models are still unable to represent the full complexity of natural ecosystems. Their formulations are mainly based on empirical laws involving many parameters. Improving biogeochemical models therefore requires to properly character...

Full description

Bibliographic Details
Published in:Journal of Marine Systems
Main Authors: Garnier, Florent, Brankart, Jean-Michel, Brasseur, Pierre, Cosme, Emmanuel
Other Authors: Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2016
Subjects:
Online Access:https://insu.hal.science/insu-01351649
https://doi.org/10.1016/j.jmarsys.2015.10.012
id ftunigrenoble:oai:HAL:insu-01351649v1
record_format openpolar
spelling ftunigrenoble:oai:HAL:insu-01351649v1 2024-05-12T08:08:08+00:00 Stochastic parameterizations of biogeochemical uncertainties in a 1/4° NEMO/PISCES model for probabilistic comparisons with ocean color data Garnier, Florent Brankart, Jean-Michel Brasseur, Pierre Cosme, Emmanuel Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ) Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) 2016-03 https://insu.hal.science/insu-01351649 https://doi.org/10.1016/j.jmarsys.2015.10.012 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmarsys.2015.10.012 insu-01351649 https://insu.hal.science/insu-01351649 doi:10.1016/j.jmarsys.2015.10.012 ISSN: 0924-7963 Journal of Marine Systems https://insu.hal.science/insu-01351649 Journal of Marine Systems, 2016, 155, pp.59-72. ⟨10.1016/j.jmarsys.2015.10.012⟩ [SDE]Environmental Sciences info:eu-repo/semantics/article Journal articles 2016 ftunigrenoble https://doi.org/10.1016/j.jmarsys.2015.10.012 2024-04-18T04:18:02Z International audience In spite of recent advances, biogeochemical models are still unable to represent the full complexity of natural ecosystems. Their formulations are mainly based on empirical laws involving many parameters. Improving biogeochemical models therefore requires to properly characterize model uncertainties and their consequences. Subsequently, this paper investigates the potential of using random processes to simulate some uncertainties of the 1/4° coupled Physical–Biogeochemical NEMO/PISCES model of the North Atlantic ocean.Starting from a deterministic simulation performed with the original PISCES formulation, we propose a generic method based on AR(1) random processes to generate perturbations with temporal and spatial correlations. These perturbations are introduced into the model formulations to simulate 2 classes of uncertainties: the uncertainties on biogeochemical parameters and the uncertainties induced by unresolved scales in the presence of non-linear processes. Using these stochastic parameterizations, a probabilistic version of PISCES is designed and a 60-member ensemble simulation is performed.With respect to the simulation of chlorophyll, the relevance of the probabilistic configuration and the impacts of these stochastic parameterizations are assessed. In particular, it is shown that the ensemble simulation is in good agreement with the SeaWIFS ocean color data. Using these observations, the statistical consistency (reliability) of the ensemble is evaluated with rank histograms. Finally, the benefits expected from the probabilistic description of uncertainties (model error) are discussed in the context of future ocean color data assimilation. Article in Journal/Newspaper North Atlantic Université Grenoble Alpes: HAL Journal of Marine Systems 155 59 72
institution Open Polar
collection Université Grenoble Alpes: HAL
op_collection_id ftunigrenoble
language English
topic [SDE]Environmental Sciences
spellingShingle [SDE]Environmental Sciences
Garnier, Florent
Brankart, Jean-Michel
Brasseur, Pierre
Cosme, Emmanuel
Stochastic parameterizations of biogeochemical uncertainties in a 1/4° NEMO/PISCES model for probabilistic comparisons with ocean color data
topic_facet [SDE]Environmental Sciences
description International audience In spite of recent advances, biogeochemical models are still unable to represent the full complexity of natural ecosystems. Their formulations are mainly based on empirical laws involving many parameters. Improving biogeochemical models therefore requires to properly characterize model uncertainties and their consequences. Subsequently, this paper investigates the potential of using random processes to simulate some uncertainties of the 1/4° coupled Physical–Biogeochemical NEMO/PISCES model of the North Atlantic ocean.Starting from a deterministic simulation performed with the original PISCES formulation, we propose a generic method based on AR(1) random processes to generate perturbations with temporal and spatial correlations. These perturbations are introduced into the model formulations to simulate 2 classes of uncertainties: the uncertainties on biogeochemical parameters and the uncertainties induced by unresolved scales in the presence of non-linear processes. Using these stochastic parameterizations, a probabilistic version of PISCES is designed and a 60-member ensemble simulation is performed.With respect to the simulation of chlorophyll, the relevance of the probabilistic configuration and the impacts of these stochastic parameterizations are assessed. In particular, it is shown that the ensemble simulation is in good agreement with the SeaWIFS ocean color data. Using these observations, the statistical consistency (reliability) of the ensemble is evaluated with rank histograms. Finally, the benefits expected from the probabilistic description of uncertainties (model error) are discussed in the context of future ocean color data assimilation.
author2 Laboratoire de glaciologie et géophysique de l'environnement (LGGE)
Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
format Article in Journal/Newspaper
author Garnier, Florent
Brankart, Jean-Michel
Brasseur, Pierre
Cosme, Emmanuel
author_facet Garnier, Florent
Brankart, Jean-Michel
Brasseur, Pierre
Cosme, Emmanuel
author_sort Garnier, Florent
title Stochastic parameterizations of biogeochemical uncertainties in a 1/4° NEMO/PISCES model for probabilistic comparisons with ocean color data
title_short Stochastic parameterizations of biogeochemical uncertainties in a 1/4° NEMO/PISCES model for probabilistic comparisons with ocean color data
title_full Stochastic parameterizations of biogeochemical uncertainties in a 1/4° NEMO/PISCES model for probabilistic comparisons with ocean color data
title_fullStr Stochastic parameterizations of biogeochemical uncertainties in a 1/4° NEMO/PISCES model for probabilistic comparisons with ocean color data
title_full_unstemmed Stochastic parameterizations of biogeochemical uncertainties in a 1/4° NEMO/PISCES model for probabilistic comparisons with ocean color data
title_sort stochastic parameterizations of biogeochemical uncertainties in a 1/4° nemo/pisces model for probabilistic comparisons with ocean color data
publisher HAL CCSD
publishDate 2016
url https://insu.hal.science/insu-01351649
https://doi.org/10.1016/j.jmarsys.2015.10.012
genre North Atlantic
genre_facet North Atlantic
op_source ISSN: 0924-7963
Journal of Marine Systems
https://insu.hal.science/insu-01351649
Journal of Marine Systems, 2016, 155, pp.59-72. ⟨10.1016/j.jmarsys.2015.10.012⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmarsys.2015.10.012
insu-01351649
https://insu.hal.science/insu-01351649
doi:10.1016/j.jmarsys.2015.10.012
op_doi https://doi.org/10.1016/j.jmarsys.2015.10.012
container_title Journal of Marine Systems
container_volume 155
container_start_page 59
op_container_end_page 72
_version_ 1798851042514829312