Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP

International audience Predictions of marine ice-sheet behaviour require models that are able to robustly simulate grounding line migration. We present results of an intercomparison exercise for marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Pattyn, F., Schoof, C., Perichon, L., Hindmarsh, R. C. A., Bueler, E., de Fleurian, B., Durand, Geoffroy, Gagliardini, O., Gladstone, R., Goldberg, D., Gudmundsson, G. H., Huybrechts, P., Lee, V., Nick, F. M., Payne, A. J., Pollard, D., Rybak, O., Saito, F., Vieli, A.
Other Authors: Laboratoire de Glaciologie Bruxelles, Université libre de Bruxelles (ULB), Department of Earth and Ocean Sciences Vancouver, University of British Columbia (UBC), British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Department of Mathematics and Geophysical Institute, University of Alaska Anchorage, Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), School of Geographical Sciences Bristol, University of Bristol Bristol, Courant Institute of Mathematical Sciences New York (CIMS), New York University New York (NYU), NYU System (NYU)-NYU System (NYU), Earth System Sciences & Department of Geography, Vrije Universiteit Brussel (VUB), Institute for Marine and Atmospheric Research Utrecht (IMAU), Universiteit Utrecht / Utrecht University Utrecht, Earth and Environmental Systems Institute, Pennsylvania State University (Penn State), Penn State System-Penn State System, Frontier Research Center for Global Change (FRCGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Department of Geography, Durham University, IceCube-Dyn, European Project: 226375,EC:FP7:ENV,FP7-ENV-2008-1,ICE2SEA(2009)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2012
Subjects:
Online Access:https://insu.hal.science/insu-00844423
https://insu.hal.science/insu-00844423/document
https://insu.hal.science/insu-00844423/file/tc-6-573-2012.pdf
https://doi.org/10.5194/tc-6-573-2012
id ftunigrenoble:oai:HAL:insu-00844423v1
record_format openpolar
institution Open Polar
collection Université Grenoble Alpes: HAL
op_collection_id ftunigrenoble
language English
topic [SDU.STU]Sciences of the Universe [physics]/Earth Sciences
spellingShingle [SDU.STU]Sciences of the Universe [physics]/Earth Sciences
Pattyn, F.
Schoof, C.
Perichon, L.
Hindmarsh, R. C. A.
Bueler, E.
de Fleurian, B.
Durand, Geoffroy
Gagliardini, O.
Gladstone, R.
Goldberg, D.
Gudmundsson, G. H.
Huybrechts, P.
Lee, V.
Nick, F. M.
Payne, A. J.
Pollard, D.
Rybak, O.
Saito, F.
Vieli, A.
Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP
topic_facet [SDU.STU]Sciences of the Universe [physics]/Earth Sciences
description International audience Predictions of marine ice-sheet behaviour require models that are able to robustly simulate grounding line migration. We present results of an intercomparison exercise for marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no effects of lateral buttressing). Unique steady state grounding line positions exist for ice sheets on a downward sloping bed, while hysteresis occurs across an overdeepened bed, and stable steady state grounding line positions only occur on the downward-sloping sections. Models based on the shallow ice approximation, which does not resolve extensional stresses, do not reproduce the approximate analytical results unless appropriate parameterizations for ice flux are imposed at the grounding line. For extensional-stress resolving "shelfy stream" models, differences between model results were mainly due to the choice of spatial discretization. Moving grid methods were found to be the most accurate at capturing grounding line evolution, since they track the grounding line explicitly. Adaptive mesh refinement can further improve accuracy, including fixed grid models that generally perform poorly at coarse resolution. Fixed grid models, with nested grid representations of the grounding line, are able to generate accurate steady state positions, but can be inaccurate over transients. Only one full- Stokes model was included in the intercomparison, and consequently the accuracy of shelfy stream models as approximations of full-Stokes models remains to be determined in detail, especially during transients.
author2 Laboratoire de Glaciologie Bruxelles
Université libre de Bruxelles (ULB)
Department of Earth and Ocean Sciences Vancouver
University of British Columbia (UBC)
British Antarctic Survey (BAS)
Natural Environment Research Council (NERC)
Department of Mathematics and Geophysical Institute
University of Alaska Anchorage
Laboratoire de glaciologie et géophysique de l'environnement (LGGE)
Observatoire des Sciences de l'Univers de Grenoble (OSUG)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
School of Geographical Sciences Bristol
University of Bristol Bristol
Courant Institute of Mathematical Sciences New York (CIMS)
New York University New York (NYU)
NYU System (NYU)-NYU System (NYU)
Earth System Sciences & Department of Geography
Vrije Universiteit Brussel (VUB)
Institute for Marine and Atmospheric Research Utrecht (IMAU)
Universiteit Utrecht / Utrecht University Utrecht
Earth and Environmental Systems Institute
Pennsylvania State University (Penn State)
Penn State System-Penn State System
Frontier Research Center for Global Change (FRCGC)
Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
Department of Geography
Durham University
IceCube-Dyn
European Project: 226375,EC:FP7:ENV,FP7-ENV-2008-1,ICE2SEA(2009)
format Article in Journal/Newspaper
author Pattyn, F.
Schoof, C.
Perichon, L.
Hindmarsh, R. C. A.
Bueler, E.
de Fleurian, B.
Durand, Geoffroy
Gagliardini, O.
Gladstone, R.
Goldberg, D.
Gudmundsson, G. H.
Huybrechts, P.
Lee, V.
Nick, F. M.
Payne, A. J.
Pollard, D.
Rybak, O.
Saito, F.
Vieli, A.
author_facet Pattyn, F.
Schoof, C.
Perichon, L.
Hindmarsh, R. C. A.
Bueler, E.
de Fleurian, B.
Durand, Geoffroy
Gagliardini, O.
Gladstone, R.
Goldberg, D.
Gudmundsson, G. H.
Huybrechts, P.
Lee, V.
Nick, F. M.
Payne, A. J.
Pollard, D.
Rybak, O.
Saito, F.
Vieli, A.
author_sort Pattyn, F.
title Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP
title_short Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP
title_full Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP
title_fullStr Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP
title_full_unstemmed Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP
title_sort results of the marine ice sheet model intercomparison project, mismip
publisher HAL CCSD
publishDate 2012
url https://insu.hal.science/insu-00844423
https://insu.hal.science/insu-00844423/document
https://insu.hal.science/insu-00844423/file/tc-6-573-2012.pdf
https://doi.org/10.5194/tc-6-573-2012
genre Ice Sheet
The Cryosphere
genre_facet Ice Sheet
The Cryosphere
op_source ISSN: 1994-0424
EISSN: 1994-0416
The Cryosphere
https://insu.hal.science/insu-00844423
The Cryosphere, 2012, 6, pp.573- 588. ⟨10.5194/tc-6-573-2012⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-6-573-2012
info:eu-repo/grantAgreement/EC/FP7/226375/EU/Ice2sea - estimating the future contribution of continental ice to sea-level rise/ICE2SEA
insu-00844423
https://insu.hal.science/insu-00844423
https://insu.hal.science/insu-00844423/document
https://insu.hal.science/insu-00844423/file/tc-6-573-2012.pdf
doi:10.5194/tc-6-573-2012
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/tc-6-573-2012
container_title The Cryosphere
container_volume 6
container_issue 3
container_start_page 573
op_container_end_page 588
_version_ 1798847591546355712
spelling ftunigrenoble:oai:HAL:insu-00844423v1 2024-05-12T08:05:18+00:00 Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP Pattyn, F. Schoof, C. Perichon, L. Hindmarsh, R. C. A. Bueler, E. de Fleurian, B. Durand, Geoffroy Gagliardini, O. Gladstone, R. Goldberg, D. Gudmundsson, G. H. Huybrechts, P. Lee, V. Nick, F. M. Payne, A. J. Pollard, D. Rybak, O. Saito, F. Vieli, A. Laboratoire de Glaciologie Bruxelles Université libre de Bruxelles (ULB) Department of Earth and Ocean Sciences Vancouver University of British Columbia (UBC) British Antarctic Survey (BAS) Natural Environment Research Council (NERC) Department of Mathematics and Geophysical Institute University of Alaska Anchorage Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) School of Geographical Sciences Bristol University of Bristol Bristol Courant Institute of Mathematical Sciences New York (CIMS) New York University New York (NYU) NYU System (NYU)-NYU System (NYU) Earth System Sciences & Department of Geography Vrije Universiteit Brussel (VUB) Institute for Marine and Atmospheric Research Utrecht (IMAU) Universiteit Utrecht / Utrecht University Utrecht Earth and Environmental Systems Institute Pennsylvania State University (Penn State) Penn State System-Penn State System Frontier Research Center for Global Change (FRCGC) Japan Agency for Marine-Earth Science and Technology (JAMSTEC) Department of Geography Durham University IceCube-Dyn European Project: 226375,EC:FP7:ENV,FP7-ENV-2008-1,ICE2SEA(2009) 2012-05-30 https://insu.hal.science/insu-00844423 https://insu.hal.science/insu-00844423/document https://insu.hal.science/insu-00844423/file/tc-6-573-2012.pdf https://doi.org/10.5194/tc-6-573-2012 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-6-573-2012 info:eu-repo/grantAgreement/EC/FP7/226375/EU/Ice2sea - estimating the future contribution of continental ice to sea-level rise/ICE2SEA insu-00844423 https://insu.hal.science/insu-00844423 https://insu.hal.science/insu-00844423/document https://insu.hal.science/insu-00844423/file/tc-6-573-2012.pdf doi:10.5194/tc-6-573-2012 info:eu-repo/semantics/OpenAccess ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://insu.hal.science/insu-00844423 The Cryosphere, 2012, 6, pp.573- 588. ⟨10.5194/tc-6-573-2012⟩ [SDU.STU]Sciences of the Universe [physics]/Earth Sciences info:eu-repo/semantics/article Journal articles 2012 ftunigrenoble https://doi.org/10.5194/tc-6-573-2012 2024-04-18T02:14:38Z International audience Predictions of marine ice-sheet behaviour require models that are able to robustly simulate grounding line migration. We present results of an intercomparison exercise for marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no effects of lateral buttressing). Unique steady state grounding line positions exist for ice sheets on a downward sloping bed, while hysteresis occurs across an overdeepened bed, and stable steady state grounding line positions only occur on the downward-sloping sections. Models based on the shallow ice approximation, which does not resolve extensional stresses, do not reproduce the approximate analytical results unless appropriate parameterizations for ice flux are imposed at the grounding line. For extensional-stress resolving "shelfy stream" models, differences between model results were mainly due to the choice of spatial discretization. Moving grid methods were found to be the most accurate at capturing grounding line evolution, since they track the grounding line explicitly. Adaptive mesh refinement can further improve accuracy, including fixed grid models that generally perform poorly at coarse resolution. Fixed grid models, with nested grid representations of the grounding line, are able to generate accurate steady state positions, but can be inaccurate over transients. Only one full- Stokes model was included in the intercomparison, and consequently the accuracy of shelfy stream models as approximations of full-Stokes models remains to be determined in detail, especially during transients. Article in Journal/Newspaper Ice Sheet The Cryosphere Université Grenoble Alpes: HAL The Cryosphere 6 3 573 588