210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world's largest cold-water coral reef

International audience Here we show the use of the 210Pb-226Ra excess method to determine the growth rate of two corals from the world's largest known cold-water coral reef, Røst Reef, north of the Arctic circle off Norway. Colonies of each of the two species that build the reef, Lophelia pertu...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Sabatier, Pierre, Reyss, Jean-Louis, Hall-Spencer, Jason M., Colin, Christophe, Frank, Norbert, Tisnerat-Laborde, Nadine, Bordier, Louise, Douville, Eric
Other Authors: Environnements, Dynamiques et Territoires de Montagne (EDYTEM), Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS), Interactions et dynamique des environnements de surface (IDES), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Océan et Interfaces (OCEANIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), School of Marine Science and Engineering, Plymouth University, Géochrononologie Traceurs Archéométrie (GEOTRAC), Géochimie Des Impacts (GEDI), The publication of this article is financed by CNRS-INSU
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2012
Subjects:
Online Access:https://hal.science/halsde-00691397
https://hal.science/halsde-00691397/document
https://hal.science/halsde-00691397/file/bg-9-1253-2012.pdf
https://doi.org/10.5194/bg-9-1253-2012
id ftunigrenoble:oai:HAL:halsde-00691397v1
record_format openpolar
institution Open Polar
collection Université Grenoble Alpes: HAL
op_collection_id ftunigrenoble
language English
topic [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
spellingShingle [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
Sabatier, Pierre
Reyss, Jean-Louis
Hall-Spencer, Jason M.
Colin, Christophe
Frank, Norbert
Tisnerat-Laborde, Nadine
Bordier, Louise
Douville, Eric
210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world's largest cold-water coral reef
topic_facet [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
description International audience Here we show the use of the 210Pb-226Ra excess method to determine the growth rate of two corals from the world's largest known cold-water coral reef, Røst Reef, north of the Arctic circle off Norway. Colonies of each of the two species that build the reef, Lophelia pertusa and Madrepora oculata, were collected alive at 350 m depth using a submersible. Pb and Ra isotopes were measured along the major growth axis of both specimens using low level alpha and gamma spectrometry and trace element compositions were studied. 210Pb and 226Ra differ in the way they are incorporated into coral skeletons. Hence, to assess growth rates, we considered the exponential decrease of initially incorporated 210Pb, as well as the increase in 210Pb from the decay of 226Ra and contamination with 210Pb associated with Mn-Fe coatings that we were unable to remove completely from the oldest parts of the skeletons. 226Ra activity was similar in both coral species, so, assuming constant uptake of 210Pb through time, we used the 210Pb-226Ra chronology to calculate growth rates. The 45.5 cm long branch of M. oculata was 31 yr with an average linear growth rate of 14.4 ± 1.1 mm yr−1 (2.6 polyps per year). Despite cleaning, a correction for Mn-Fe oxide contamination was required for the oldest part of the colony; this correction corroborated our radiocarbon date of 40 yr and a mean growth rate of 2 polyps yr−1. This rate is similar to the one obtained in aquarium experiments under optimal growth conditions. For the 80 cm-long L. pertusa colony, metal-oxide contamination remained in both the middle and basal part of the coral skeleton despite cleaning, inhibiting similar age and growth rate estimates. The youngest part of the colony was free of metal oxides and this 15 cm section had an estimated a growth rate of 8 mm yr−1, with high uncertainty (~1 polyp every two to three years). We are less certain of this 210Pb growth rate estimate which is within the lowermost ranges of previous growth rate estimates. We show that ...
author2 Environnements, Dynamiques et Territoires de Montagne (EDYTEM)
Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)
Interactions et dynamique des environnements de surface (IDES)
Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Océan et Interfaces (OCEANIS)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
School of Marine Science and Engineering
Plymouth University
Géochrononologie Traceurs Archéométrie (GEOTRAC)
Géochimie Des Impacts (GEDI)
The publication of this article is financed by CNRS-INSU
format Article in Journal/Newspaper
author Sabatier, Pierre
Reyss, Jean-Louis
Hall-Spencer, Jason M.
Colin, Christophe
Frank, Norbert
Tisnerat-Laborde, Nadine
Bordier, Louise
Douville, Eric
author_facet Sabatier, Pierre
Reyss, Jean-Louis
Hall-Spencer, Jason M.
Colin, Christophe
Frank, Norbert
Tisnerat-Laborde, Nadine
Bordier, Louise
Douville, Eric
author_sort Sabatier, Pierre
title 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world's largest cold-water coral reef
title_short 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world's largest cold-water coral reef
title_full 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world's largest cold-water coral reef
title_fullStr 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world's largest cold-water coral reef
title_full_unstemmed 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world's largest cold-water coral reef
title_sort 210pb-226ra chronology reveals rapid growth rate of madrepora oculata and lophelia pertusa on world's largest cold-water coral reef
publisher HAL CCSD
publishDate 2012
url https://hal.science/halsde-00691397
https://hal.science/halsde-00691397/document
https://hal.science/halsde-00691397/file/bg-9-1253-2012.pdf
https://doi.org/10.5194/bg-9-1253-2012
genre Lophelia pertusa
genre_facet Lophelia pertusa
op_source ISSN: 1726-4170
EISSN: 1726-4189
Biogeosciences
https://hal.science/halsde-00691397
Biogeosciences, 2012, 9 (3), pp.1253-1265. ⟨10.5194/bg-9-1253-2012⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/bg-9-1253-2012
halsde-00691397
https://hal.science/halsde-00691397
https://hal.science/halsde-00691397/document
https://hal.science/halsde-00691397/file/bg-9-1253-2012.pdf
doi:10.5194/bg-9-1253-2012
op_rights http://creativecommons.org/licenses/by-nd/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/bg-9-1253-2012
container_title Biogeosciences
container_volume 9
container_issue 3
container_start_page 1253
op_container_end_page 1265
_version_ 1810456175664168960
spelling ftunigrenoble:oai:HAL:halsde-00691397v1 2024-09-15T18:18:02+00:00 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world's largest cold-water coral reef Sabatier, Pierre Reyss, Jean-Louis Hall-Spencer, Jason M. Colin, Christophe Frank, Norbert Tisnerat-Laborde, Nadine Bordier, Louise Douville, Eric Environnements, Dynamiques et Territoires de Montagne (EDYTEM) Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS) Interactions et dynamique des environnements de surface (IDES) Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Océan et Interfaces (OCEANIS) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) School of Marine Science and Engineering Plymouth University Géochrononologie Traceurs Archéométrie (GEOTRAC) Géochimie Des Impacts (GEDI) The publication of this article is financed by CNRS-INSU 2012 https://hal.science/halsde-00691397 https://hal.science/halsde-00691397/document https://hal.science/halsde-00691397/file/bg-9-1253-2012.pdf https://doi.org/10.5194/bg-9-1253-2012 en eng HAL CCSD European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/bg-9-1253-2012 halsde-00691397 https://hal.science/halsde-00691397 https://hal.science/halsde-00691397/document https://hal.science/halsde-00691397/file/bg-9-1253-2012.pdf doi:10.5194/bg-9-1253-2012 http://creativecommons.org/licenses/by-nd/ info:eu-repo/semantics/OpenAccess ISSN: 1726-4170 EISSN: 1726-4189 Biogeosciences https://hal.science/halsde-00691397 Biogeosciences, 2012, 9 (3), pp.1253-1265. ⟨10.5194/bg-9-1253-2012⟩ [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography info:eu-repo/semantics/article Journal articles 2012 ftunigrenoble https://doi.org/10.5194/bg-9-1253-2012 2024-07-29T23:39:57Z International audience Here we show the use of the 210Pb-226Ra excess method to determine the growth rate of two corals from the world's largest known cold-water coral reef, Røst Reef, north of the Arctic circle off Norway. Colonies of each of the two species that build the reef, Lophelia pertusa and Madrepora oculata, were collected alive at 350 m depth using a submersible. Pb and Ra isotopes were measured along the major growth axis of both specimens using low level alpha and gamma spectrometry and trace element compositions were studied. 210Pb and 226Ra differ in the way they are incorporated into coral skeletons. Hence, to assess growth rates, we considered the exponential decrease of initially incorporated 210Pb, as well as the increase in 210Pb from the decay of 226Ra and contamination with 210Pb associated with Mn-Fe coatings that we were unable to remove completely from the oldest parts of the skeletons. 226Ra activity was similar in both coral species, so, assuming constant uptake of 210Pb through time, we used the 210Pb-226Ra chronology to calculate growth rates. The 45.5 cm long branch of M. oculata was 31 yr with an average linear growth rate of 14.4 ± 1.1 mm yr−1 (2.6 polyps per year). Despite cleaning, a correction for Mn-Fe oxide contamination was required for the oldest part of the colony; this correction corroborated our radiocarbon date of 40 yr and a mean growth rate of 2 polyps yr−1. This rate is similar to the one obtained in aquarium experiments under optimal growth conditions. For the 80 cm-long L. pertusa colony, metal-oxide contamination remained in both the middle and basal part of the coral skeleton despite cleaning, inhibiting similar age and growth rate estimates. The youngest part of the colony was free of metal oxides and this 15 cm section had an estimated a growth rate of 8 mm yr−1, with high uncertainty (~1 polyp every two to three years). We are less certain of this 210Pb growth rate estimate which is within the lowermost ranges of previous growth rate estimates. We show that ... Article in Journal/Newspaper Lophelia pertusa Université Grenoble Alpes: HAL Biogeosciences 9 3 1253 1265