Landsat‐based greening trends in alpine ecosystems are inflated by multidecadal increases in summer observations

International audience Remote sensing is an invaluable tool for tracking decadal-scale changes in vegetation greenness in response to climate and land use changes. While the Landsat archive has been widely used to explore these trends and their spatial and temporal complexity, its inconsistent sampl...

Full description

Bibliographic Details
Published in:Ecography
Main Authors: Bayle, Arthur, Gascoin, Simon, Berner, Logan, T, Choler, Philippe
Other Authors: Laboratoire d'Ecologie Alpine (LECA), Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)-Université Grenoble Alpes (UGA), Centre d'études spatiales de la biosphère (CESBIO), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Northern Arizona University Flagstaff, ANR-20-CE32-0002,TOP,Trajectoires des systèmes agro-pastoraux en montagne: adaptation des pratiques aux changments climatiques, écologiques et socio-économiques(2020)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2024
Subjects:
Online Access:https://hal.science/hal-04686240
https://hal.science/hal-04686240v1/document
https://hal.science/hal-04686240v1/file/Ecography%20-%202024%20-%20Bayle%20-%20Landsat%E2%80%90based%20greening%20trends%20in%20alpine%20ecosystems%20are%20inflated%20by%20multidecadal%20increases%20in.pdf
https://doi.org/10.1111/ecog.07394
id ftunigrenoble:oai:HAL:hal-04686240v1
record_format openpolar
institution Open Polar
collection Université Grenoble Alpes: HAL
op_collection_id ftunigrenoble
language English
topic alpine
bias
greening
Landsat
observations
tundra
NDVI
[SDE.BE]Environmental Sciences/Biodiversity and Ecology
[SDE.MCG]Environmental Sciences/Global Changes
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
[SDV.EE.BIO]Life Sciences [q-bio]/Ecology
environment/Bioclimatology
[SDV.EE.ECO]Life Sciences [q-bio]/Ecology
environment/Ecosystems
spellingShingle alpine
bias
greening
Landsat
observations
tundra
NDVI
[SDE.BE]Environmental Sciences/Biodiversity and Ecology
[SDE.MCG]Environmental Sciences/Global Changes
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
[SDV.EE.BIO]Life Sciences [q-bio]/Ecology
environment/Bioclimatology
[SDV.EE.ECO]Life Sciences [q-bio]/Ecology
environment/Ecosystems
Bayle, Arthur
Gascoin, Simon
Berner, Logan, T
Choler, Philippe
Landsat‐based greening trends in alpine ecosystems are inflated by multidecadal increases in summer observations
topic_facet alpine
bias
greening
Landsat
observations
tundra
NDVI
[SDE.BE]Environmental Sciences/Biodiversity and Ecology
[SDE.MCG]Environmental Sciences/Global Changes
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
[SDV.EE.BIO]Life Sciences [q-bio]/Ecology
environment/Bioclimatology
[SDV.EE.ECO]Life Sciences [q-bio]/Ecology
environment/Ecosystems
description International audience Remote sensing is an invaluable tool for tracking decadal-scale changes in vegetation greenness in response to climate and land use changes. While the Landsat archive has been widely used to explore these trends and their spatial and temporal complexity, its inconsistent sampling frequency over time and space raises concerns about its ability to provide reliable estimates of annual vegetation indices such as the annual maximum normalised difference vegetation index (NDVI), commonly used as a proxy of plant productivity. Here we demonstrate for seasonally snow-covered ecosystems, that greening trends derived from annual maximum NDVI can be significantly overestimated because the number of available Landsat observations increases over time, and mostly that the magnitude of the overestimation varies along environmental gradients. Typically, areas with a short growing season and few available observations experience the largest bias in greening trend estimation. We show these conditions are met in late snowmelting habitats in the European Alps, which are known to be particularly sensitive to temperature increases and present conservation challenges. In this critical context, almost 50% of the magnitude of estimated greening can be explained by this bias. Our study calls for greater caution when comparing greening trends magnitudes between habitats with different snow conditions and observations. At a minimum we recommend reporting information on the temporal sampling of the observations, including the number of observations per year, when long-term studies with Landsat observations are undertaken.
author2 Laboratoire d'Ecologie Alpine (LECA)
Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)-Université Grenoble Alpes (UGA)
Centre d'études spatiales de la biosphère (CESBIO)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Northern Arizona University Flagstaff
ANR-20-CE32-0002,TOP,Trajectoires des systèmes agro-pastoraux en montagne: adaptation des pratiques aux changments climatiques, écologiques et socio-économiques(2020)
format Article in Journal/Newspaper
author Bayle, Arthur
Gascoin, Simon
Berner, Logan, T
Choler, Philippe
author_facet Bayle, Arthur
Gascoin, Simon
Berner, Logan, T
Choler, Philippe
author_sort Bayle, Arthur
title Landsat‐based greening trends in alpine ecosystems are inflated by multidecadal increases in summer observations
title_short Landsat‐based greening trends in alpine ecosystems are inflated by multidecadal increases in summer observations
title_full Landsat‐based greening trends in alpine ecosystems are inflated by multidecadal increases in summer observations
title_fullStr Landsat‐based greening trends in alpine ecosystems are inflated by multidecadal increases in summer observations
title_full_unstemmed Landsat‐based greening trends in alpine ecosystems are inflated by multidecadal increases in summer observations
title_sort landsat‐based greening trends in alpine ecosystems are inflated by multidecadal increases in summer observations
publisher HAL CCSD
publishDate 2024
url https://hal.science/hal-04686240
https://hal.science/hal-04686240v1/document
https://hal.science/hal-04686240v1/file/Ecography%20-%202024%20-%20Bayle%20-%20Landsat%E2%80%90based%20greening%20trends%20in%20alpine%20ecosystems%20are%20inflated%20by%20multidecadal%20increases%20in.pdf
https://doi.org/10.1111/ecog.07394
genre Tundra
genre_facet Tundra
op_source EISSN: 1600-0587
Ecography
https://hal.science/hal-04686240
Ecography, 2024, ⟨10.1111/ecog.07394⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1111/ecog.07394
doi:10.1111/ecog.07394
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1111/ecog.07394
container_title Ecography
_version_ 1813452878393638912
spelling ftunigrenoble:oai:HAL:hal-04686240v1 2024-10-20T14:12:05+00:00 Landsat‐based greening trends in alpine ecosystems are inflated by multidecadal increases in summer observations Bayle, Arthur Gascoin, Simon Berner, Logan, T Choler, Philippe Laboratoire d'Ecologie Alpine (LECA) Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)-Université Grenoble Alpes (UGA) Centre d'études spatiales de la biosphère (CESBIO) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Northern Arizona University Flagstaff ANR-20-CE32-0002,TOP,Trajectoires des systèmes agro-pastoraux en montagne: adaptation des pratiques aux changments climatiques, écologiques et socio-économiques(2020) 2024-07-22 https://hal.science/hal-04686240 https://hal.science/hal-04686240v1/document https://hal.science/hal-04686240v1/file/Ecography%20-%202024%20-%20Bayle%20-%20Landsat%E2%80%90based%20greening%20trends%20in%20alpine%20ecosystems%20are%20inflated%20by%20multidecadal%20increases%20in.pdf https://doi.org/10.1111/ecog.07394 en eng HAL CCSD Wiley info:eu-repo/semantics/altIdentifier/doi/10.1111/ecog.07394 doi:10.1111/ecog.07394 info:eu-repo/semantics/OpenAccess EISSN: 1600-0587 Ecography https://hal.science/hal-04686240 Ecography, 2024, ⟨10.1111/ecog.07394⟩ alpine bias greening Landsat observations tundra NDVI [SDE.BE]Environmental Sciences/Biodiversity and Ecology [SDE.MCG]Environmental Sciences/Global Changes [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment [SDV.EE.BIO]Life Sciences [q-bio]/Ecology environment/Bioclimatology [SDV.EE.ECO]Life Sciences [q-bio]/Ecology environment/Ecosystems info:eu-repo/semantics/article Journal articles 2024 ftunigrenoble https://doi.org/10.1111/ecog.07394 2024-09-24T00:40:45Z International audience Remote sensing is an invaluable tool for tracking decadal-scale changes in vegetation greenness in response to climate and land use changes. While the Landsat archive has been widely used to explore these trends and their spatial and temporal complexity, its inconsistent sampling frequency over time and space raises concerns about its ability to provide reliable estimates of annual vegetation indices such as the annual maximum normalised difference vegetation index (NDVI), commonly used as a proxy of plant productivity. Here we demonstrate for seasonally snow-covered ecosystems, that greening trends derived from annual maximum NDVI can be significantly overestimated because the number of available Landsat observations increases over time, and mostly that the magnitude of the overestimation varies along environmental gradients. Typically, areas with a short growing season and few available observations experience the largest bias in greening trend estimation. We show these conditions are met in late snowmelting habitats in the European Alps, which are known to be particularly sensitive to temperature increases and present conservation challenges. In this critical context, almost 50% of the magnitude of estimated greening can be explained by this bias. Our study calls for greater caution when comparing greening trends magnitudes between habitats with different snow conditions and observations. At a minimum we recommend reporting information on the temporal sampling of the observations, including the number of observations per year, when long-term studies with Landsat observations are undertaken. Article in Journal/Newspaper Tundra Université Grenoble Alpes: HAL Ecography