Alpine rock glacier activity over Holocene to modern timescales (western French Alps)

International audience Abstract. Active rock glaciers are some of the most frequent cryospheric landforms in midlatitude high-elevation mountain ranges. Their activity strongly influences the hydrology and geomorphology of alpine environments over short (years to decades) and long (centuries to mill...

Full description

Bibliographic Details
Published in:Earth Surface Dynamics
Main Authors: Lehmann, Benjamin, Anderson, Robert, Bodin, Xavier, Cusicanqui, Diego, Valla, Pierre, Carcaillet, Julien
Other Authors: Environnements, Dynamiques et Territoires de Montagne (EDYTEM), Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS), Institute of Arctic Alpine Research University of Colorado Boulder (INSTAAR), University of Colorado Boulder, Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Institut des Sciences de la Terre (ISTerre), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA), ANR-18-MPGA-0006,MAGICLIM,Climat de montagne, glaciers et dynamique du paysage(2018)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Ice
Online Access:https://hal.science/hal-03703808
https://hal.science/hal-03703808/document
https://hal.science/hal-03703808/file/esurf-10-605-2022.pdf
https://doi.org/10.5194/esurf-10-605-2022
id ftunigrenoble:oai:HAL:hal-03703808v1
record_format openpolar
institution Open Polar
collection Université Grenoble Alpes: HAL
op_collection_id ftunigrenoble
language English
topic [SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology
[SHS.GEO]Humanities and Social Sciences/Geography
spellingShingle [SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology
[SHS.GEO]Humanities and Social Sciences/Geography
Lehmann, Benjamin
Anderson, Robert
Bodin, Xavier
Cusicanqui, Diego
Valla, Pierre
Carcaillet, Julien
Alpine rock glacier activity over Holocene to modern timescales (western French Alps)
topic_facet [SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology
[SHS.GEO]Humanities and Social Sciences/Geography
description International audience Abstract. Active rock glaciers are some of the most frequent cryospheric landforms in midlatitude high-elevation mountain ranges. Their activity strongly influences the hydrology and geomorphology of alpine environments over short (years to decades) and long (centuries to millennia) timescales. Being conspicuous expressions of mountain permafrost and important water reserves in the form of ground ice, rock glaciers are seen as increasingly important actors in the geomorphological and hydrological evolution of mountain systems, especially in the context of current climate change. Over geological timescales, rock glaciers both reflect paleoclimate conditions and transport rock boulders produced by headwall erosion, and they therefore participate in shaping high mountain slopes. However, the dynamics of rock glaciers and their evolution over different timescales remain under-constrained. In this study, we adopt a multi-method approach, including field observations, remote sensing, and geochronology, to investigate the rock glacier system of the Vallon de la Route (Combeynot Massif, western French Alps). Remotely sensed images and correlation techniques are used to document the displacement field of the rock glacier over timescales ranging from days to decades. Additionally, to estimate displacement over periods from centuries to millennia, we employ terrestrial cosmogenic nuclide (quartz 10Be) surface-exposure dating on rock boulder surfaces located along the central flow line of the rock glacier, targeting different longitudinal positions from the headwall to the rock glacier terminus. The remote sensing analysis demonstrates that between 1960 and 2018 the two lower units of the rock glacier were motionless, the transitional unit presented an integrated surface velocity of 0.03±0.02 m a−1, and the two upper active units above 2600 m a.s.l. showed a velocity between 0.14±0.08 and 0.15±0.05 m a−1. Our results show 10Be surface-exposure ages ranging from 13.10±0.51 to 1.88±0.14 ka. The ...
author2 Environnements, Dynamiques et Territoires de Montagne (EDYTEM)
Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)
Institute of Arctic Alpine Research University of Colorado Boulder (INSTAAR)
University of Colorado Boulder
Institut des Géosciences de l’Environnement (IGE)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
Institut des Sciences de la Terre (ISTerre)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA)
ANR-18-MPGA-0006,MAGICLIM,Climat de montagne, glaciers et dynamique du paysage(2018)
format Article in Journal/Newspaper
author Lehmann, Benjamin
Anderson, Robert
Bodin, Xavier
Cusicanqui, Diego
Valla, Pierre
Carcaillet, Julien
author_facet Lehmann, Benjamin
Anderson, Robert
Bodin, Xavier
Cusicanqui, Diego
Valla, Pierre
Carcaillet, Julien
author_sort Lehmann, Benjamin
title Alpine rock glacier activity over Holocene to modern timescales (western French Alps)
title_short Alpine rock glacier activity over Holocene to modern timescales (western French Alps)
title_full Alpine rock glacier activity over Holocene to modern timescales (western French Alps)
title_fullStr Alpine rock glacier activity over Holocene to modern timescales (western French Alps)
title_full_unstemmed Alpine rock glacier activity over Holocene to modern timescales (western French Alps)
title_sort alpine rock glacier activity over holocene to modern timescales (western french alps)
publisher HAL CCSD
publishDate 2022
url https://hal.science/hal-03703808
https://hal.science/hal-03703808/document
https://hal.science/hal-03703808/file/esurf-10-605-2022.pdf
https://doi.org/10.5194/esurf-10-605-2022
genre Ice
permafrost
genre_facet Ice
permafrost
op_source ISSN: 2196-6311
EISSN: 2196-632X
Earth Surface Dynamics
https://hal.science/hal-03703808
Earth Surface Dynamics, 2022, 10 (3), pp.605-633. ⟨10.5194/esurf-10-605-2022⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/esurf-10-605-2022
hal-03703808
https://hal.science/hal-03703808
https://hal.science/hal-03703808/document
https://hal.science/hal-03703808/file/esurf-10-605-2022.pdf
doi:10.5194/esurf-10-605-2022
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/esurf-10-605-2022
container_title Earth Surface Dynamics
container_volume 10
container_issue 3
container_start_page 605
op_container_end_page 633
_version_ 1797584520399028224
spelling ftunigrenoble:oai:HAL:hal-03703808v1 2024-04-28T08:23:54+00:00 Alpine rock glacier activity over Holocene to modern timescales (western French Alps) Lehmann, Benjamin Anderson, Robert Bodin, Xavier Cusicanqui, Diego Valla, Pierre Carcaillet, Julien Environnements, Dynamiques et Territoires de Montagne (EDYTEM) Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS) Institute of Arctic Alpine Research University of Colorado Boulder (INSTAAR) University of Colorado Boulder Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) Institut des Sciences de la Terre (ISTerre) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA) ANR-18-MPGA-0006,MAGICLIM,Climat de montagne, glaciers et dynamique du paysage(2018) 2022 https://hal.science/hal-03703808 https://hal.science/hal-03703808/document https://hal.science/hal-03703808/file/esurf-10-605-2022.pdf https://doi.org/10.5194/esurf-10-605-2022 en eng HAL CCSD European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/esurf-10-605-2022 hal-03703808 https://hal.science/hal-03703808 https://hal.science/hal-03703808/document https://hal.science/hal-03703808/file/esurf-10-605-2022.pdf doi:10.5194/esurf-10-605-2022 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 2196-6311 EISSN: 2196-632X Earth Surface Dynamics https://hal.science/hal-03703808 Earth Surface Dynamics, 2022, 10 (3), pp.605-633. ⟨10.5194/esurf-10-605-2022⟩ [SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology [SHS.GEO]Humanities and Social Sciences/Geography info:eu-repo/semantics/article Journal articles 2022 ftunigrenoble https://doi.org/10.5194/esurf-10-605-2022 2024-04-18T03:03:47Z International audience Abstract. Active rock glaciers are some of the most frequent cryospheric landforms in midlatitude high-elevation mountain ranges. Their activity strongly influences the hydrology and geomorphology of alpine environments over short (years to decades) and long (centuries to millennia) timescales. Being conspicuous expressions of mountain permafrost and important water reserves in the form of ground ice, rock glaciers are seen as increasingly important actors in the geomorphological and hydrological evolution of mountain systems, especially in the context of current climate change. Over geological timescales, rock glaciers both reflect paleoclimate conditions and transport rock boulders produced by headwall erosion, and they therefore participate in shaping high mountain slopes. However, the dynamics of rock glaciers and their evolution over different timescales remain under-constrained. In this study, we adopt a multi-method approach, including field observations, remote sensing, and geochronology, to investigate the rock glacier system of the Vallon de la Route (Combeynot Massif, western French Alps). Remotely sensed images and correlation techniques are used to document the displacement field of the rock glacier over timescales ranging from days to decades. Additionally, to estimate displacement over periods from centuries to millennia, we employ terrestrial cosmogenic nuclide (quartz 10Be) surface-exposure dating on rock boulder surfaces located along the central flow line of the rock glacier, targeting different longitudinal positions from the headwall to the rock glacier terminus. The remote sensing analysis demonstrates that between 1960 and 2018 the two lower units of the rock glacier were motionless, the transitional unit presented an integrated surface velocity of 0.03±0.02 m a−1, and the two upper active units above 2600 m a.s.l. showed a velocity between 0.14±0.08 and 0.15±0.05 m a−1. Our results show 10Be surface-exposure ages ranging from 13.10±0.51 to 1.88±0.14 ka. The ... Article in Journal/Newspaper Ice permafrost Université Grenoble Alpes: HAL Earth Surface Dynamics 10 3 605 633