Probabilistic Forecasts of Sea Ice Trajectories in the Arctic: Impact of Uncertainties in Surface Wind and Ice Cohesion
International audience We study the response of the Lagrangian sea ice model neXtSIM to the uncertainty in sea surface wind and sea ice cohesion. The ice mechanics in neXtSIM are based on a brittle-like rheological framework. The study considers short-term ensemble forecasts of Arctic sea ice from J...
Published in: | Oceans |
---|---|
Main Authors: | , , , , |
Other Authors: | , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2020
|
Subjects: | |
Online Access: | https://hal.univ-grenoble-alpes.fr/hal-03405336 https://hal.univ-grenoble-alpes.fr/hal-03405336/document https://hal.univ-grenoble-alpes.fr/hal-03405336/file/Chen2020Oceans.pdf https://doi.org/10.3390/oceans1040022 |
id |
ftunigrenoble:oai:HAL:hal-03405336v1 |
---|---|
record_format |
openpolar |
spelling |
ftunigrenoble:oai:HAL:hal-03405336v1 2024-05-12T07:59:06+00:00 Probabilistic Forecasts of Sea Ice Trajectories in the Arctic: Impact of Uncertainties in Surface Wind and Ice Cohesion Cheng, Sukun Aydoğdu, Ali Rampal, Pierre Carrassi, Alberto Bertino, Laurent Nansen Environmental and Remote Sensing Center Bergen (NERSC) Centro Euro-Mediterraneo per i Cambiamenti Climatici Bologna (CMCC) Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) Department of Meteorology Reading University of Reading (UOR) 2020 https://hal.univ-grenoble-alpes.fr/hal-03405336 https://hal.univ-grenoble-alpes.fr/hal-03405336/document https://hal.univ-grenoble-alpes.fr/hal-03405336/file/Chen2020Oceans.pdf https://doi.org/10.3390/oceans1040022 en eng HAL CCSD MDPI info:eu-repo/semantics/altIdentifier/doi/10.3390/oceans1040022 hal-03405336 https://hal.univ-grenoble-alpes.fr/hal-03405336 https://hal.univ-grenoble-alpes.fr/hal-03405336/document https://hal.univ-grenoble-alpes.fr/hal-03405336/file/Chen2020Oceans.pdf doi:10.3390/oceans1040022 info:eu-repo/semantics/OpenAccess ISSN: 2673-1924 Oceans https://hal.univ-grenoble-alpes.fr/hal-03405336 Oceans, 2020, 1 (4), pp.326 - 342. ⟨10.3390/oceans1040022⟩ Arctic sea ice drift neXtSIM ensemble forecasting wind perturbation ice cohesion perturbation [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography info:eu-repo/semantics/article Journal articles 2020 ftunigrenoble https://doi.org/10.3390/oceans1040022 2024-04-18T03:13:27Z International audience We study the response of the Lagrangian sea ice model neXtSIM to the uncertainty in sea surface wind and sea ice cohesion. The ice mechanics in neXtSIM are based on a brittle-like rheological framework. The study considers short-term ensemble forecasts of Arctic sea ice from January to April 2008. Ensembles are generated by perturbing the wind inputs and ice cohesion field both separately and jointly. The resulting uncertainty in the probabilistic forecasts is evaluated statistically based on the analysis of Lagrangian sea ice trajectories as sampled by virtual drifters seeded in the model to cover the Arctic Ocean and using metrics borrowed from the search-and-rescue literature. The comparison among the different ensembles indicates that wind perturbations dominate the forecast uncertainty (i.e., the absolute spread of the ensemble), while the inhomogeneities in the ice cohesion field significantly increase the degree of anisotropy in the spread-i.e., trajectories drift divergently in different directions. We suggest that in order to obtain enough uncertainties in a sea ice model with brittle-like rheologies, to predict sea ice drift and trajectories, one should consider using ensemble-based simulations where at least wind forcing and sea ice cohesion are perturbed. Article in Journal/Newspaper Arctic Arctic Ocean Sea ice Université Grenoble Alpes: HAL Arctic Arctic Ocean Oceans 1 4 326 342 |
institution |
Open Polar |
collection |
Université Grenoble Alpes: HAL |
op_collection_id |
ftunigrenoble |
language |
English |
topic |
Arctic sea ice drift neXtSIM ensemble forecasting wind perturbation ice cohesion perturbation [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography |
spellingShingle |
Arctic sea ice drift neXtSIM ensemble forecasting wind perturbation ice cohesion perturbation [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography Cheng, Sukun Aydoğdu, Ali Rampal, Pierre Carrassi, Alberto Bertino, Laurent Probabilistic Forecasts of Sea Ice Trajectories in the Arctic: Impact of Uncertainties in Surface Wind and Ice Cohesion |
topic_facet |
Arctic sea ice drift neXtSIM ensemble forecasting wind perturbation ice cohesion perturbation [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography |
description |
International audience We study the response of the Lagrangian sea ice model neXtSIM to the uncertainty in sea surface wind and sea ice cohesion. The ice mechanics in neXtSIM are based on a brittle-like rheological framework. The study considers short-term ensemble forecasts of Arctic sea ice from January to April 2008. Ensembles are generated by perturbing the wind inputs and ice cohesion field both separately and jointly. The resulting uncertainty in the probabilistic forecasts is evaluated statistically based on the analysis of Lagrangian sea ice trajectories as sampled by virtual drifters seeded in the model to cover the Arctic Ocean and using metrics borrowed from the search-and-rescue literature. The comparison among the different ensembles indicates that wind perturbations dominate the forecast uncertainty (i.e., the absolute spread of the ensemble), while the inhomogeneities in the ice cohesion field significantly increase the degree of anisotropy in the spread-i.e., trajectories drift divergently in different directions. We suggest that in order to obtain enough uncertainties in a sea ice model with brittle-like rheologies, to predict sea ice drift and trajectories, one should consider using ensemble-based simulations where at least wind forcing and sea ice cohesion are perturbed. |
author2 |
Nansen Environmental and Remote Sensing Center Bergen (NERSC) Centro Euro-Mediterraneo per i Cambiamenti Climatici Bologna (CMCC) Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) Department of Meteorology Reading University of Reading (UOR) |
format |
Article in Journal/Newspaper |
author |
Cheng, Sukun Aydoğdu, Ali Rampal, Pierre Carrassi, Alberto Bertino, Laurent |
author_facet |
Cheng, Sukun Aydoğdu, Ali Rampal, Pierre Carrassi, Alberto Bertino, Laurent |
author_sort |
Cheng, Sukun |
title |
Probabilistic Forecasts of Sea Ice Trajectories in the Arctic: Impact of Uncertainties in Surface Wind and Ice Cohesion |
title_short |
Probabilistic Forecasts of Sea Ice Trajectories in the Arctic: Impact of Uncertainties in Surface Wind and Ice Cohesion |
title_full |
Probabilistic Forecasts of Sea Ice Trajectories in the Arctic: Impact of Uncertainties in Surface Wind and Ice Cohesion |
title_fullStr |
Probabilistic Forecasts of Sea Ice Trajectories in the Arctic: Impact of Uncertainties in Surface Wind and Ice Cohesion |
title_full_unstemmed |
Probabilistic Forecasts of Sea Ice Trajectories in the Arctic: Impact of Uncertainties in Surface Wind and Ice Cohesion |
title_sort |
probabilistic forecasts of sea ice trajectories in the arctic: impact of uncertainties in surface wind and ice cohesion |
publisher |
HAL CCSD |
publishDate |
2020 |
url |
https://hal.univ-grenoble-alpes.fr/hal-03405336 https://hal.univ-grenoble-alpes.fr/hal-03405336/document https://hal.univ-grenoble-alpes.fr/hal-03405336/file/Chen2020Oceans.pdf https://doi.org/10.3390/oceans1040022 |
geographic |
Arctic Arctic Ocean |
geographic_facet |
Arctic Arctic Ocean |
genre |
Arctic Arctic Ocean Sea ice |
genre_facet |
Arctic Arctic Ocean Sea ice |
op_source |
ISSN: 2673-1924 Oceans https://hal.univ-grenoble-alpes.fr/hal-03405336 Oceans, 2020, 1 (4), pp.326 - 342. ⟨10.3390/oceans1040022⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.3390/oceans1040022 hal-03405336 https://hal.univ-grenoble-alpes.fr/hal-03405336 https://hal.univ-grenoble-alpes.fr/hal-03405336/document https://hal.univ-grenoble-alpes.fr/hal-03405336/file/Chen2020Oceans.pdf doi:10.3390/oceans1040022 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.3390/oceans1040022 |
container_title |
Oceans |
container_volume |
1 |
container_issue |
4 |
container_start_page |
326 |
op_container_end_page |
342 |
_version_ |
1798839992953339904 |