Eddy compensation and controls of the enhanced sea‐to‐air CO 2 flux during positive phases of the Southern Annular Mode
International audience The current positive trend in the Southern Annular Mode (SAM) is thought to reduce the growth rate of the Southern Ocean CO2 sink because enhanced wind‐driven upwelling of dissolved inorganic carbon (DIC) increases outgassing of natural CO2. However, no study to date has quant...
Published in: | Global Biogeochemical Cycles |
---|---|
Main Authors: | , , , , , , |
Other Authors: | , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2013
|
Subjects: | |
Online Access: | https://hal.science/hal-03113003 https://hal.science/hal-03113003/document https://hal.science/hal-03113003/file/gbc.20090.pdf https://doi.org/10.1002/gbc.20090 |
id |
ftunigrenoble:oai:HAL:hal-03113003v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Université Grenoble Alpes: HAL |
op_collection_id |
ftunigrenoble |
language |
English |
topic |
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere |
spellingShingle |
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere Dufour, Carolina Sommer, Julien Le Gehlen, Marion Orr, James Molines, Jean‐marc Simeon, Jennifer Barnier, Bernard Eddy compensation and controls of the enhanced sea‐to‐air CO 2 flux during positive phases of the Southern Annular Mode |
topic_facet |
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere |
description |
International audience The current positive trend in the Southern Annular Mode (SAM) is thought to reduce the growth rate of the Southern Ocean CO2 sink because enhanced wind‐driven upwelling of dissolved inorganic carbon (DIC) increases outgassing of natural CO2. However, no study to date has quantified the potentially large role of mesoscale eddies in compensating intensified upwelling nor the mixed‐layer processes in terms of their effects on CO2 fluxes. Here we report on results from two new simulations in a regional 0.5° eddying model of the Southern Ocean. The first simulation is forced with interannually varying atmospheric reanalysis and coupled to a biogeochemistry model run under constant preindustrial atmospheric CO2. The second simulation is like the first except that superimposed on the forcing is a poleward shifted and intensified westerlies wind anomaly consistent with the positive phase of the SAM. In response to the SAM, the Southern Ocean's sea‐to‐air CO2 flux is enhanced by 0.1 Pg C yr−1 per standard deviation of the SAM, mostly from the Antarctic Zone (AZ), where enhanced surface DIC is only partly compensated by enhanced surface alkalinity. Increased mixed‐layer DIC in the AZ results from a combination of increased upwelling below the mixed layer and increased vertical diffusion at the base of the mixed layer. Previous studies overlooked the latter. Thus, upward supply of DIC and alkalinity depends on associated vertical gradients just below the mixed layer, which are affected by interior ocean transport. Our eddying model study suggests that about one third of the SAM enhancement of the Ekman‐induced northward DIC transport is compensated by southward transport from standing and transient eddies. |
author2 |
Laboratoire des Écoulements Géophysiques et Industriels Grenoble (LEGI) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics (MERMAID) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) |
format |
Article in Journal/Newspaper |
author |
Dufour, Carolina Sommer, Julien Le Gehlen, Marion Orr, James Molines, Jean‐marc Simeon, Jennifer Barnier, Bernard |
author_facet |
Dufour, Carolina Sommer, Julien Le Gehlen, Marion Orr, James Molines, Jean‐marc Simeon, Jennifer Barnier, Bernard |
author_sort |
Dufour, Carolina |
title |
Eddy compensation and controls of the enhanced sea‐to‐air CO 2 flux during positive phases of the Southern Annular Mode |
title_short |
Eddy compensation and controls of the enhanced sea‐to‐air CO 2 flux during positive phases of the Southern Annular Mode |
title_full |
Eddy compensation and controls of the enhanced sea‐to‐air CO 2 flux during positive phases of the Southern Annular Mode |
title_fullStr |
Eddy compensation and controls of the enhanced sea‐to‐air CO 2 flux during positive phases of the Southern Annular Mode |
title_full_unstemmed |
Eddy compensation and controls of the enhanced sea‐to‐air CO 2 flux during positive phases of the Southern Annular Mode |
title_sort |
eddy compensation and controls of the enhanced sea‐to‐air co 2 flux during positive phases of the southern annular mode |
publisher |
HAL CCSD |
publishDate |
2013 |
url |
https://hal.science/hal-03113003 https://hal.science/hal-03113003/document https://hal.science/hal-03113003/file/gbc.20090.pdf https://doi.org/10.1002/gbc.20090 |
geographic |
Antarctic Southern Ocean The Antarctic |
geographic_facet |
Antarctic Southern Ocean The Antarctic |
genre |
Antarc* Antarctic Southern Ocean |
genre_facet |
Antarc* Antarctic Southern Ocean |
op_source |
ISSN: 0886-6236 EISSN: 1944-8224 Global Biogeochemical Cycles https://hal.science/hal-03113003 Global Biogeochemical Cycles, 2013, 27 (3), pp.950-961. ⟨10.1002/gbc.20090⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1002/gbc.20090 hal-03113003 https://hal.science/hal-03113003 https://hal.science/hal-03113003/document https://hal.science/hal-03113003/file/gbc.20090.pdf doi:10.1002/gbc.20090 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1002/gbc.20090 |
container_title |
Global Biogeochemical Cycles |
container_volume |
27 |
container_issue |
3 |
container_start_page |
950 |
op_container_end_page |
961 |
_version_ |
1798846183606583296 |
spelling |
ftunigrenoble:oai:HAL:hal-03113003v1 2024-05-12T07:54:01+00:00 Eddy compensation and controls of the enhanced sea‐to‐air CO 2 flux during positive phases of the Southern Annular Mode Dufour, Carolina Sommer, Julien Le Gehlen, Marion Orr, James Molines, Jean‐marc Simeon, Jennifer Barnier, Bernard Laboratoire des Écoulements Géophysiques et Industriels Grenoble (LEGI) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics (MERMAID) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) 2013 https://hal.science/hal-03113003 https://hal.science/hal-03113003/document https://hal.science/hal-03113003/file/gbc.20090.pdf https://doi.org/10.1002/gbc.20090 en eng HAL CCSD American Geophysical Union info:eu-repo/semantics/altIdentifier/doi/10.1002/gbc.20090 hal-03113003 https://hal.science/hal-03113003 https://hal.science/hal-03113003/document https://hal.science/hal-03113003/file/gbc.20090.pdf doi:10.1002/gbc.20090 info:eu-repo/semantics/OpenAccess ISSN: 0886-6236 EISSN: 1944-8224 Global Biogeochemical Cycles https://hal.science/hal-03113003 Global Biogeochemical Cycles, 2013, 27 (3), pp.950-961. ⟨10.1002/gbc.20090⟩ [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere info:eu-repo/semantics/article Journal articles 2013 ftunigrenoble https://doi.org/10.1002/gbc.20090 2024-04-18T03:22:40Z International audience The current positive trend in the Southern Annular Mode (SAM) is thought to reduce the growth rate of the Southern Ocean CO2 sink because enhanced wind‐driven upwelling of dissolved inorganic carbon (DIC) increases outgassing of natural CO2. However, no study to date has quantified the potentially large role of mesoscale eddies in compensating intensified upwelling nor the mixed‐layer processes in terms of their effects on CO2 fluxes. Here we report on results from two new simulations in a regional 0.5° eddying model of the Southern Ocean. The first simulation is forced with interannually varying atmospheric reanalysis and coupled to a biogeochemistry model run under constant preindustrial atmospheric CO2. The second simulation is like the first except that superimposed on the forcing is a poleward shifted and intensified westerlies wind anomaly consistent with the positive phase of the SAM. In response to the SAM, the Southern Ocean's sea‐to‐air CO2 flux is enhanced by 0.1 Pg C yr−1 per standard deviation of the SAM, mostly from the Antarctic Zone (AZ), where enhanced surface DIC is only partly compensated by enhanced surface alkalinity. Increased mixed‐layer DIC in the AZ results from a combination of increased upwelling below the mixed layer and increased vertical diffusion at the base of the mixed layer. Previous studies overlooked the latter. Thus, upward supply of DIC and alkalinity depends on associated vertical gradients just below the mixed layer, which are affected by interior ocean transport. Our eddying model study suggests that about one third of the SAM enhancement of the Ekman‐induced northward DIC transport is compensated by southward transport from standing and transient eddies. Article in Journal/Newspaper Antarc* Antarctic Southern Ocean Université Grenoble Alpes: HAL Antarctic Southern Ocean The Antarctic Global Biogeochemical Cycles 27 3 950 961 |