Quantification of seasonal and diurnal dynamics of subglacial channels using seismic observations on an Alpine glacier

International audience Water flowing below glaciers exerts a major control on glacier basal sliding. However, our knowledge of the physics of subglacial hydrology and its link with sliding is limited because of lacking observations. Here we use a 2-year-long dataset made of on-ice-measured seismic a...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Nanni, Ugo, Gimbert, Florent, Vincent, Christian, Gräff, Dominik, Walter, Fabian, Piard, Luc, Moreau, Luc
Other Authors: Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology Zürich (ETH Zürich), Environnements, Dynamiques et Territoires de Montagne (EDYTEM), Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS), ANR-17-CE01-0008,SEISMORIV,Instrumentation sismologique des rivières: un nouveau moyen de quantifier le role des evenements climatiques extremes sur la dynamique des rivières(2017), ANR-18-CE01-0015,SAUSSURE,Glissement des glaciers et pression hydrologique sous glaciaire en relat(2018)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.science/hal-03107584
https://hal.science/hal-03107584/document
https://hal.science/hal-03107584/file/Nanni2020.pdf
https://doi.org/10.5194/tc-14-1475-2020
id ftunigrenoble:oai:HAL:hal-03107584v1
record_format openpolar
institution Open Polar
collection Université Grenoble Alpes: HAL
op_collection_id ftunigrenoble
language English
topic [SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
spellingShingle [SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
Nanni, Ugo
Gimbert, Florent
Vincent, Christian
Gräff, Dominik
Walter, Fabian
Piard, Luc
Moreau, Luc
Quantification of seasonal and diurnal dynamics of subglacial channels using seismic observations on an Alpine glacier
topic_facet [SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
description International audience Water flowing below glaciers exerts a major control on glacier basal sliding. However, our knowledge of the physics of subglacial hydrology and its link with sliding is limited because of lacking observations. Here we use a 2-year-long dataset made of on-ice-measured seismic and in situ-measured glacier basal sliding speed on Glacier d'Argentière (French Alps) to investigate the physics of subglacial channels and its potential link with glacier basal sliding. Using dedicated theory and concomitant measurements of water discharge, we quantify temporal changes in channels' hydraulic radius and hydraulic pressure gradient. At seasonal timescales we find that hydraulic radius and hydraulic pressure gradient respectively exhibit a 2- and 6-fold increase from spring to summer, followed by comparable decrease towards autumn. At low discharge during the early and late melt season channels respond to changes in discharge mainly through changes in hydraulic radius, a regime that is consistent with predictions of channels' behaviour at equilibrium. In contrast, at high discharge and high short-term water-supply variability (summertime), channels undergo strong changes in hydraulic pressure gradient, a behaviour that is consistent with channels behaving out of equilibrium. This out-of-equilibrium regime is further supported by observations at the diurnal scale, which prove that channels pressurize in the morning and depressurize in the afternoon. During summer we also observe high and sustained basal sliding speed, which supports that the widespread inefficient drainage system (cavities) is likely pressurized concomitantly with the channel system. We propose that pressurized channels help sustain high pressure in cavities (and therefore high glacier sliding speed) through an efficient hydraulic connection between the two systems. The present findings provide an essential basis for testing the physics represented in subglacial hydrology and glacier sliding models.
author2 Institut des Géosciences de l’Environnement (IGE)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology Zürich (ETH Zürich)
Environnements, Dynamiques et Territoires de Montagne (EDYTEM)
Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)
ANR-17-CE01-0008,SEISMORIV,Instrumentation sismologique des rivières: un nouveau moyen de quantifier le role des evenements climatiques extremes sur la dynamique des rivières(2017)
ANR-18-CE01-0015,SAUSSURE,Glissement des glaciers et pression hydrologique sous glaciaire en relat(2018)
format Article in Journal/Newspaper
author Nanni, Ugo
Gimbert, Florent
Vincent, Christian
Gräff, Dominik
Walter, Fabian
Piard, Luc
Moreau, Luc
author_facet Nanni, Ugo
Gimbert, Florent
Vincent, Christian
Gräff, Dominik
Walter, Fabian
Piard, Luc
Moreau, Luc
author_sort Nanni, Ugo
title Quantification of seasonal and diurnal dynamics of subglacial channels using seismic observations on an Alpine glacier
title_short Quantification of seasonal and diurnal dynamics of subglacial channels using seismic observations on an Alpine glacier
title_full Quantification of seasonal and diurnal dynamics of subglacial channels using seismic observations on an Alpine glacier
title_fullStr Quantification of seasonal and diurnal dynamics of subglacial channels using seismic observations on an Alpine glacier
title_full_unstemmed Quantification of seasonal and diurnal dynamics of subglacial channels using seismic observations on an Alpine glacier
title_sort quantification of seasonal and diurnal dynamics of subglacial channels using seismic observations on an alpine glacier
publisher HAL CCSD
publishDate 2020
url https://hal.science/hal-03107584
https://hal.science/hal-03107584/document
https://hal.science/hal-03107584/file/Nanni2020.pdf
https://doi.org/10.5194/tc-14-1475-2020
genre The Cryosphere
genre_facet The Cryosphere
op_source ISSN: 1994-0424
EISSN: 1994-0416
The Cryosphere
https://hal.science/hal-03107584
The Cryosphere, 2020, 14 (5), pp.1475-1496. ⟨10.5194/tc-14-1475-2020⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-14-1475-2020
hal-03107584
https://hal.science/hal-03107584
https://hal.science/hal-03107584/document
https://hal.science/hal-03107584/file/Nanni2020.pdf
doi:10.5194/tc-14-1475-2020
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/tc-14-1475-2020
container_title The Cryosphere
container_volume 14
container_issue 5
container_start_page 1475
op_container_end_page 1496
_version_ 1798834166596370432
spelling ftunigrenoble:oai:HAL:hal-03107584v1 2024-05-12T08:11:56+00:00 Quantification of seasonal and diurnal dynamics of subglacial channels using seismic observations on an Alpine glacier Nanni, Ugo Gimbert, Florent Vincent, Christian Gräff, Dominik Walter, Fabian Piard, Luc Moreau, Luc Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology Zürich (ETH Zürich) Environnements, Dynamiques et Territoires de Montagne (EDYTEM) Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS) ANR-17-CE01-0008,SEISMORIV,Instrumentation sismologique des rivières: un nouveau moyen de quantifier le role des evenements climatiques extremes sur la dynamique des rivières(2017) ANR-18-CE01-0015,SAUSSURE,Glissement des glaciers et pression hydrologique sous glaciaire en relat(2018) 2020 https://hal.science/hal-03107584 https://hal.science/hal-03107584/document https://hal.science/hal-03107584/file/Nanni2020.pdf https://doi.org/10.5194/tc-14-1475-2020 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-14-1475-2020 hal-03107584 https://hal.science/hal-03107584 https://hal.science/hal-03107584/document https://hal.science/hal-03107584/file/Nanni2020.pdf doi:10.5194/tc-14-1475-2020 info:eu-repo/semantics/OpenAccess ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://hal.science/hal-03107584 The Cryosphere, 2020, 14 (5), pp.1475-1496. ⟨10.5194/tc-14-1475-2020⟩ [SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology info:eu-repo/semantics/article Journal articles 2020 ftunigrenoble https://doi.org/10.5194/tc-14-1475-2020 2024-04-18T03:22:59Z International audience Water flowing below glaciers exerts a major control on glacier basal sliding. However, our knowledge of the physics of subglacial hydrology and its link with sliding is limited because of lacking observations. Here we use a 2-year-long dataset made of on-ice-measured seismic and in situ-measured glacier basal sliding speed on Glacier d'Argentière (French Alps) to investigate the physics of subglacial channels and its potential link with glacier basal sliding. Using dedicated theory and concomitant measurements of water discharge, we quantify temporal changes in channels' hydraulic radius and hydraulic pressure gradient. At seasonal timescales we find that hydraulic radius and hydraulic pressure gradient respectively exhibit a 2- and 6-fold increase from spring to summer, followed by comparable decrease towards autumn. At low discharge during the early and late melt season channels respond to changes in discharge mainly through changes in hydraulic radius, a regime that is consistent with predictions of channels' behaviour at equilibrium. In contrast, at high discharge and high short-term water-supply variability (summertime), channels undergo strong changes in hydraulic pressure gradient, a behaviour that is consistent with channels behaving out of equilibrium. This out-of-equilibrium regime is further supported by observations at the diurnal scale, which prove that channels pressurize in the morning and depressurize in the afternoon. During summer we also observe high and sustained basal sliding speed, which supports that the widespread inefficient drainage system (cavities) is likely pressurized concomitantly with the channel system. We propose that pressurized channels help sustain high pressure in cavities (and therefore high glacier sliding speed) through an efficient hydraulic connection between the two systems. The present findings provide an essential basis for testing the physics represented in subglacial hydrology and glacier sliding models. Article in Journal/Newspaper The Cryosphere Université Grenoble Alpes: HAL The Cryosphere 14 5 1475 1496