Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change

[Departement_IRSTEA]Eaux [TR1_IRSTEA]ARCEAU [ADD1_IRSTEA]Hydrosystèmes et risques naturels International audience We conducted a model-based assessment of changes in permafrost area and carbon storage for simulations driven by RCP4.5 and RCP8.5 projections between 2010 and 2299 for the northern perm...

Full description

Bibliographic Details
Published in:Proceedings of the National Academy of Sciences
Main Authors: Mcguire, David, Lawrence, David, Koven, Charles, Clein, Joy, Burke, Eleanor, Chen, Guangsheng, Jafarov, Elchin, Macdougall, Andrew, Marchenko, Sergey, Nicolsky, Dmitry, Peng, Shushi, Rinke, Annette, Ciais, Philippe, Gouttevin, Isabelle, Hayes, Daniel, F., Ji, Duoying, Krinner, Gerhard, Moore, John, Romanovsky, Vladimir, Schädel, Christina, Schaefer, Kevin, Schuur, Edward, Zhuang, Qianlai
Other Authors: Northeast Forestry University (NEFU), Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University Beijing, Abteilung Klinische Sozialmedizin, Berufs- und Umweltdermatologie, Universität Heidelberg Heidelberg = Heidelberg University, Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), ICOS-ATC (ICOS-ATC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), Breast Oncology Program, University of Michigan Ann Arbor, University of Michigan System-University of Michigan System, State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University (BNU), Robarts Research Institute Canada, University of Western Ontario (UWO), Department of Physics Lancaster, Lancaster University
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2018
Subjects:
Online Access:https://hal.science/hal-01806825
https://hal.science/hal-01806825/document
https://hal.science/hal-01806825/file/pub00060051.pdf
https://doi.org/10.1073/pnas.1719903115
Description
Summary:[Departement_IRSTEA]Eaux [TR1_IRSTEA]ARCEAU [ADD1_IRSTEA]Hydrosystèmes et risques naturels International audience We conducted a model-based assessment of changes in permafrost area and carbon storage for simulations driven by RCP4.5 and RCP8.5 projections between 2010 and 2299 for the northern permafrost region. All models simulating carbon represented soil with depth, a critical structural feature needed to represent the permafrost carbon-climate feedback, but that is not a universal feature of all climate models. Between 2010 and 2299, simulations indicated losses of permafrost between 3 and 5 million km2 for the RCP4.5 climate and between 6 and 16 million km2 for the RCP8.5 climate. For the RCP4.5 projection, cumulative change in soil carbon varied between 66-Pg C (1015-g carbon) loss to 70-Pg C gain. For the RCP8.5 projection, losses in soil carbon varied between 74 and 652 Pg C (mean loss, 341 Pg C). For the RCP4.5 projection, gains in vegetation carbon were largely responsible for the overall projected net gains in ecosystem carbon by 2299 (8- to 244-Pg C gains). In contrast, for the RCP8.5 projection, gains in vegetation carbon were not great enough to compensate for the losses of carbon projected by four of the five models; changes in ecosystem carbon ranged from a 641-Pg C loss to a 167-Pg C gain (mean, 208-Pg C loss). The models indicate that substantial net losses of ecosystem carbon would not occur until after 2100. This assessment suggests that effective mitigation efforts during the remainder of this century could attenuate the negative consequences of the permafrost carbon-climate feedback.