Ice cascade growth and decay: a thermodynamic approach

International audience The ice volume evolution of a frozen waterfall (or ice cascade) was studied using a thermodynamic model. The model was developed from meteorological data collected in the vicinity of the waterfall and validated from ice volume measurements estimated from terrestrial lidar imag...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Gauthier, F., Montagnat, M., Weiss, J., Allard, M., Hétu, B.
Other Authors: Centre d'Etudes Nordiques (CEN), Université Laval Québec (ULaval), EDGe, Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2013
Subjects:
Online Access:https://hal.science/hal-01747132
https://hal.science/hal-01747132/document
https://hal.science/hal-01747132/file/Gauthier2013_IceCascadeThermo.pdf
https://doi.org/10.3189/2013JoG12J206
id ftunigrenoble:oai:HAL:hal-01747132v1
record_format openpolar
institution Open Polar
collection Université Grenoble Alpes: HAL
op_collection_id ftunigrenoble
language English
topic [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology
spellingShingle [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology
Gauthier, F.
Montagnat, M.
Weiss, J.
Allard, M.
Hétu, B.
Ice cascade growth and decay: a thermodynamic approach
topic_facet [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology
description International audience The ice volume evolution of a frozen waterfall (or ice cascade) was studied using a thermodynamic model. The model was developed from meteorological data collected in the vicinity of the waterfall and validated from ice volume measurements estimated from terrestrial lidar images. The ice cascade forms over a 45 m high rock wall located in northern Gaspésie, Québec, Canada. Two stages of formation were identified. During the first stage, the growth is mainly controlled by air convection around the flowing and free-falling water. The ice cascade growth rate increases with decreasing air temperature below 08C and when the water flow reaches its lowest level. During the second stage, the ice cascade covers the entire rock-wall surface, water flow is isolated from the outside environment and ice volume increases asymptotically. Heat is evacuated from the water flow through the ice cover by conduction. The growth is controlled mainly by the conductive heat loss through the ice cover but also by the longwave radiation emitted at the ice surface during the night. In spring, melting of the ice cascade is dependent on the air convection over the ice surface but also on the sensible heat carried by the increasing water flow and the solar radiation received during the day.
author2 Centre d'Etudes Nordiques (CEN)
Université Laval Québec (ULaval)
EDGe
Laboratoire de glaciologie et géophysique de l'environnement (LGGE)
Observatoire des Sciences de l'Univers de Grenoble (OSUG)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Gauthier, F.
Montagnat, M.
Weiss, J.
Allard, M.
Hétu, B.
author_facet Gauthier, F.
Montagnat, M.
Weiss, J.
Allard, M.
Hétu, B.
author_sort Gauthier, F.
title Ice cascade growth and decay: a thermodynamic approach
title_short Ice cascade growth and decay: a thermodynamic approach
title_full Ice cascade growth and decay: a thermodynamic approach
title_fullStr Ice cascade growth and decay: a thermodynamic approach
title_full_unstemmed Ice cascade growth and decay: a thermodynamic approach
title_sort ice cascade growth and decay: a thermodynamic approach
publisher HAL CCSD
publishDate 2013
url https://hal.science/hal-01747132
https://hal.science/hal-01747132/document
https://hal.science/hal-01747132/file/Gauthier2013_IceCascadeThermo.pdf
https://doi.org/10.3189/2013JoG12J206
long_lat ENVELOPE(-111.452,-111.452,58.917,58.917)
geographic Canada
High Rock
geographic_facet Canada
High Rock
genre Journal of Glaciology
genre_facet Journal of Glaciology
op_source ISSN: 0022-1430
EISSN: 1727-5652
Journal of Glaciology
https://hal.science/hal-01747132
Journal of Glaciology, 2013, 59 (215), pp.507 - 523. ⟨10.3189/2013JoG12J206⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.3189/2013JoG12J206
hal-01747132
https://hal.science/hal-01747132
https://hal.science/hal-01747132/document
https://hal.science/hal-01747132/file/Gauthier2013_IceCascadeThermo.pdf
doi:10.3189/2013JoG12J206
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.3189/2013JoG12J206
container_title Journal of Glaciology
container_volume 59
container_issue 215
container_start_page 507
op_container_end_page 523
_version_ 1798848739032432640
spelling ftunigrenoble:oai:HAL:hal-01747132v1 2024-05-12T08:06:16+00:00 Ice cascade growth and decay: a thermodynamic approach Gauthier, F. Montagnat, M. Weiss, J. Allard, M. Hétu, B. Centre d'Etudes Nordiques (CEN) Université Laval Québec (ULaval) EDGe Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) 2013 https://hal.science/hal-01747132 https://hal.science/hal-01747132/document https://hal.science/hal-01747132/file/Gauthier2013_IceCascadeThermo.pdf https://doi.org/10.3189/2013JoG12J206 en eng HAL CCSD International Glaciological Society info:eu-repo/semantics/altIdentifier/doi/10.3189/2013JoG12J206 hal-01747132 https://hal.science/hal-01747132 https://hal.science/hal-01747132/document https://hal.science/hal-01747132/file/Gauthier2013_IceCascadeThermo.pdf doi:10.3189/2013JoG12J206 info:eu-repo/semantics/OpenAccess ISSN: 0022-1430 EISSN: 1727-5652 Journal of Glaciology https://hal.science/hal-01747132 Journal of Glaciology, 2013, 59 (215), pp.507 - 523. ⟨10.3189/2013JoG12J206⟩ [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology [SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology info:eu-repo/semantics/article Journal articles 2013 ftunigrenoble https://doi.org/10.3189/2013JoG12J206 2024-04-18T04:00:10Z International audience The ice volume evolution of a frozen waterfall (or ice cascade) was studied using a thermodynamic model. The model was developed from meteorological data collected in the vicinity of the waterfall and validated from ice volume measurements estimated from terrestrial lidar images. The ice cascade forms over a 45 m high rock wall located in northern Gaspésie, Québec, Canada. Two stages of formation were identified. During the first stage, the growth is mainly controlled by air convection around the flowing and free-falling water. The ice cascade growth rate increases with decreasing air temperature below 08C and when the water flow reaches its lowest level. During the second stage, the ice cascade covers the entire rock-wall surface, water flow is isolated from the outside environment and ice volume increases asymptotically. Heat is evacuated from the water flow through the ice cover by conduction. The growth is controlled mainly by the conductive heat loss through the ice cover but also by the longwave radiation emitted at the ice surface during the night. In spring, melting of the ice cascade is dependent on the air convection over the ice surface but also on the sensible heat carried by the increasing water flow and the solar radiation received during the day. Article in Journal/Newspaper Journal of Glaciology Université Grenoble Alpes: HAL Canada High Rock ENVELOPE(-111.452,-111.452,58.917,58.917) Journal of Glaciology 59 215 507 523