Constraining N 2 O emissions since 1940 using firn air isotope measurements in both hemispheres

International audience N2O is currently the third most important anthropogenic greenhouse gas in terms of radiative forcing and its atmospheric mole fraction is rising steadily. To quantify the growth rate and its causes over the past decades, we performed a multi-site reconstruction of the atmosphe...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Prokopiou, Markella, Martinerie, Patricia, Sapart, Célia J., Witrant, Emmanuel, Monteil, Guillaume, Ishijima, Kentaro, Bernard, Sophie, Kaiser, Jan, Levin, Ingeborg, Blunier, Thomas, Etheridge, David, Dlugokencky, Ed, van de Wal, Roderik S. W., Röckmann, Thomas
Other Authors: Institute for Marine and Atmospheric Research Utrecht (IMAU), Universiteit Utrecht / Utrecht University Utrecht, Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), Laboratoire de Glaciologie, Université libre de Bruxelles (ULB), GIPSA - Systèmes linéaires et robustesse (GIPSA-SLR), Département Automatique (GIPSA-DA), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), Skane University Hospital Lund, National Institute of Polar Research Tokyo (NiPR), School of Environmental Sciences Norwich, University of East Anglia Norwich (UEA), Institut für Umweltphysik Heidelberg, Universität Heidelberg Heidelberg = Heidelberg University, Centre for Ice and Climate Copenhagen, Niels Bohr Institute Copenhagen (NBI), Faculty of Science Copenhagen, University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)-Faculty of Science Copenhagen, University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), CSIRO Marine and Atmospheric Research (CSIRO-MAR), Commonwealth Scientific and Industrial Research Organisation Canberra (CSIRO), NOAA Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2017
Subjects:
Online Access:https://hal.univ-grenoble-alpes.fr/hal-01598604
https://hal.univ-grenoble-alpes.fr/hal-01598604/document
https://hal.univ-grenoble-alpes.fr/hal-01598604/file/acp-17-4539-2017.pdf
https://doi.org/10.5194/acp-17-4539-2017
id ftunigrenoble:oai:HAL:hal-01598604v1
record_format openpolar
institution Open Polar
collection Université Grenoble Alpes: HAL
op_collection_id ftunigrenoble
language English
topic [SPI.AUTO]Engineering Sciences [physics]/Automatic
spellingShingle [SPI.AUTO]Engineering Sciences [physics]/Automatic
Prokopiou, Markella
Martinerie, Patricia
Sapart, Célia J.
Witrant, Emmanuel
Monteil, Guillaume
Ishijima, Kentaro
Bernard, Sophie
Kaiser, Jan
Levin, Ingeborg
Blunier, Thomas
Etheridge, David
Dlugokencky, Ed
van de Wal, Roderik S. W.
Röckmann, Thomas
Constraining N 2 O emissions since 1940 using firn air isotope measurements in both hemispheres
topic_facet [SPI.AUTO]Engineering Sciences [physics]/Automatic
description International audience N2O is currently the third most important anthropogenic greenhouse gas in terms of radiative forcing and its atmospheric mole fraction is rising steadily. To quantify the growth rate and its causes over the past decades, we performed a multi-site reconstruction of the atmospheric N2O mole fraction and isotopic composition using new and previously published firn air data collected from Greenland and Antarctica in combination with a firn diffusion and densification model. The multi-site reconstruction showed that while the global mean N2O mole fraction increased from (290 ± 1) nmol mol−1 in 1940 to (322 ± 1) nmol mol−1 in 2008, the isotopic composition of atmospheric N2O decreased by (−2.2 ± 0.2) ‰ for δ15Nav, (−1.0 ± 0.3) ‰ for δ18O, (−1.3 ± 0.6) ‰ for δ15Nα, and (−2.8 ± 0.6) ‰ for δ15Nβ over the same period. The detailed temporal evolution of the mole fraction and isotopic composition derived from the firn air model was then used in a two-box atmospheric model (comprising a stratospheric box and a tropospheric box) to infer changes in the isotopic source signature over time. The precise value of the source strength depends on the choice of the N2O lifetime, which we choose to fix at 123 years. The average isotopic composition over the investigated period is δ15Nav = (−7.6 ± 0.8) ‰ (vs. air-N2), δ18O = (32.2 ± 0.2) ‰ (vs. Vienna Standard Mean Ocean Water – VSMOW) for δ18O, δ15Nα = (−3.0 ± 1.9) ‰ and δ15Nβ = (−11.7 ± 2.3) ‰. δ15Nav, and δ15Nβ show some temporal variability, while for the other signatures the error bars of the reconstruction are too large to retrieve reliable temporal changes. Possible processes that may explain trends in 15N are discussed. The 15N site preference ( = δ15Nα − δ15Nβ) provides evidence of a shift in emissions from denitrification to nitrification, although the uncertainty envelopes are large.
author2 Institute for Marine and Atmospheric Research Utrecht (IMAU)
Universiteit Utrecht / Utrecht University Utrecht
Institut des Géosciences de l’Environnement (IGE)
Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
Laboratoire de Glaciologie
Université libre de Bruxelles (ULB)
GIPSA - Systèmes linéaires et robustesse (GIPSA-SLR)
Département Automatique (GIPSA-DA)
Grenoble Images Parole Signal Automatique (GIPSA-lab )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Grenoble Images Parole Signal Automatique (GIPSA-lab )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
Skane University Hospital Lund
National Institute of Polar Research Tokyo (NiPR)
School of Environmental Sciences Norwich
University of East Anglia Norwich (UEA)
Institut für Umweltphysik Heidelberg
Universität Heidelberg Heidelberg = Heidelberg University
Centre for Ice and Climate Copenhagen
Niels Bohr Institute Copenhagen (NBI)
Faculty of Science Copenhagen
University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)-Faculty of Science Copenhagen
University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)
CSIRO Marine and Atmospheric Research (CSIRO-MAR)
Commonwealth Scientific and Industrial Research Organisation Canberra (CSIRO)
NOAA Earth System Research Laboratory (ESRL)
National Oceanic and Atmospheric Administration (NOAA)
format Article in Journal/Newspaper
author Prokopiou, Markella
Martinerie, Patricia
Sapart, Célia J.
Witrant, Emmanuel
Monteil, Guillaume
Ishijima, Kentaro
Bernard, Sophie
Kaiser, Jan
Levin, Ingeborg
Blunier, Thomas
Etheridge, David
Dlugokencky, Ed
van de Wal, Roderik S. W.
Röckmann, Thomas
author_facet Prokopiou, Markella
Martinerie, Patricia
Sapart, Célia J.
Witrant, Emmanuel
Monteil, Guillaume
Ishijima, Kentaro
Bernard, Sophie
Kaiser, Jan
Levin, Ingeborg
Blunier, Thomas
Etheridge, David
Dlugokencky, Ed
van de Wal, Roderik S. W.
Röckmann, Thomas
author_sort Prokopiou, Markella
title Constraining N 2 O emissions since 1940 using firn air isotope measurements in both hemispheres
title_short Constraining N 2 O emissions since 1940 using firn air isotope measurements in both hemispheres
title_full Constraining N 2 O emissions since 1940 using firn air isotope measurements in both hemispheres
title_fullStr Constraining N 2 O emissions since 1940 using firn air isotope measurements in both hemispheres
title_full_unstemmed Constraining N 2 O emissions since 1940 using firn air isotope measurements in both hemispheres
title_sort constraining n 2 o emissions since 1940 using firn air isotope measurements in both hemispheres
publisher HAL CCSD
publishDate 2017
url https://hal.univ-grenoble-alpes.fr/hal-01598604
https://hal.univ-grenoble-alpes.fr/hal-01598604/document
https://hal.univ-grenoble-alpes.fr/hal-01598604/file/acp-17-4539-2017.pdf
https://doi.org/10.5194/acp-17-4539-2017
genre Antarc*
Antarctica
Greenland
genre_facet Antarc*
Antarctica
Greenland
op_source ISSN: 1680-7316
EISSN: 1680-7324
Atmospheric Chemistry and Physics
https://hal.univ-grenoble-alpes.fr/hal-01598604
Atmospheric Chemistry and Physics, 2017, 17 (7), pp.4539 - 4564. ⟨10.5194/acp-17-4539-2017⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-17-4539-2017
hal-01598604
https://hal.univ-grenoble-alpes.fr/hal-01598604
https://hal.univ-grenoble-alpes.fr/hal-01598604/document
https://hal.univ-grenoble-alpes.fr/hal-01598604/file/acp-17-4539-2017.pdf
doi:10.5194/acp-17-4539-2017
op_rights http://creativecommons.org/licenses/by-nc/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/acp-17-4539-2017
container_title Atmospheric Chemistry and Physics
container_volume 17
container_issue 7
container_start_page 4539
op_container_end_page 4564
_version_ 1799484695475388416
spelling ftunigrenoble:oai:HAL:hal-01598604v1 2024-05-19T07:30:14+00:00 Constraining N 2 O emissions since 1940 using firn air isotope measurements in both hemispheres Prokopiou, Markella Martinerie, Patricia Sapart, Célia J. Witrant, Emmanuel Monteil, Guillaume Ishijima, Kentaro Bernard, Sophie Kaiser, Jan Levin, Ingeborg Blunier, Thomas Etheridge, David Dlugokencky, Ed van de Wal, Roderik S. W. Röckmann, Thomas Institute for Marine and Atmospheric Research Utrecht (IMAU) Universiteit Utrecht / Utrecht University Utrecht Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Laboratoire de Glaciologie Université libre de Bruxelles (ULB) GIPSA - Systèmes linéaires et robustesse (GIPSA-SLR) Département Automatique (GIPSA-DA) Grenoble Images Parole Signal Automatique (GIPSA-lab ) Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Grenoble Images Parole Signal Automatique (GIPSA-lab ) Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Skane University Hospital Lund National Institute of Polar Research Tokyo (NiPR) School of Environmental Sciences Norwich University of East Anglia Norwich (UEA) Institut für Umweltphysik Heidelberg Universität Heidelberg Heidelberg = Heidelberg University Centre for Ice and Climate Copenhagen Niels Bohr Institute Copenhagen (NBI) Faculty of Science Copenhagen University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)-Faculty of Science Copenhagen University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH) CSIRO Marine and Atmospheric Research (CSIRO-MAR) Commonwealth Scientific and Industrial Research Organisation Canberra (CSIRO) NOAA Earth System Research Laboratory (ESRL) National Oceanic and Atmospheric Administration (NOAA) 2017 https://hal.univ-grenoble-alpes.fr/hal-01598604 https://hal.univ-grenoble-alpes.fr/hal-01598604/document https://hal.univ-grenoble-alpes.fr/hal-01598604/file/acp-17-4539-2017.pdf https://doi.org/10.5194/acp-17-4539-2017 en eng HAL CCSD European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-17-4539-2017 hal-01598604 https://hal.univ-grenoble-alpes.fr/hal-01598604 https://hal.univ-grenoble-alpes.fr/hal-01598604/document https://hal.univ-grenoble-alpes.fr/hal-01598604/file/acp-17-4539-2017.pdf doi:10.5194/acp-17-4539-2017 http://creativecommons.org/licenses/by-nc/ info:eu-repo/semantics/OpenAccess ISSN: 1680-7316 EISSN: 1680-7324 Atmospheric Chemistry and Physics https://hal.univ-grenoble-alpes.fr/hal-01598604 Atmospheric Chemistry and Physics, 2017, 17 (7), pp.4539 - 4564. ⟨10.5194/acp-17-4539-2017⟩ [SPI.AUTO]Engineering Sciences [physics]/Automatic info:eu-repo/semantics/article Journal articles 2017 ftunigrenoble https://doi.org/10.5194/acp-17-4539-2017 2024-04-25T00:29:51Z International audience N2O is currently the third most important anthropogenic greenhouse gas in terms of radiative forcing and its atmospheric mole fraction is rising steadily. To quantify the growth rate and its causes over the past decades, we performed a multi-site reconstruction of the atmospheric N2O mole fraction and isotopic composition using new and previously published firn air data collected from Greenland and Antarctica in combination with a firn diffusion and densification model. The multi-site reconstruction showed that while the global mean N2O mole fraction increased from (290 ± 1) nmol mol−1 in 1940 to (322 ± 1) nmol mol−1 in 2008, the isotopic composition of atmospheric N2O decreased by (−2.2 ± 0.2) ‰ for δ15Nav, (−1.0 ± 0.3) ‰ for δ18O, (−1.3 ± 0.6) ‰ for δ15Nα, and (−2.8 ± 0.6) ‰ for δ15Nβ over the same period. The detailed temporal evolution of the mole fraction and isotopic composition derived from the firn air model was then used in a two-box atmospheric model (comprising a stratospheric box and a tropospheric box) to infer changes in the isotopic source signature over time. The precise value of the source strength depends on the choice of the N2O lifetime, which we choose to fix at 123 years. The average isotopic composition over the investigated period is δ15Nav = (−7.6 ± 0.8) ‰ (vs. air-N2), δ18O = (32.2 ± 0.2) ‰ (vs. Vienna Standard Mean Ocean Water – VSMOW) for δ18O, δ15Nα = (−3.0 ± 1.9) ‰ and δ15Nβ = (−11.7 ± 2.3) ‰. δ15Nav, and δ15Nβ show some temporal variability, while for the other signatures the error bars of the reconstruction are too large to retrieve reliable temporal changes. Possible processes that may explain trends in 15N are discussed. The 15N site preference ( = δ15Nα − δ15Nβ) provides evidence of a shift in emissions from denitrification to nitrification, although the uncertainty envelopes are large. Article in Journal/Newspaper Antarc* Antarctica Greenland Université Grenoble Alpes: HAL Atmospheric Chemistry and Physics 17 7 4539 4564