Quaternary Tephrochronology of the Scotia Sea and Bellingshausen Sea, Antarctica

The Southern Ocean is a region of the world's ocean which is fundamental to the generation of cold deep ocean water which drives the global thermo-haline circulation. Previous investigations of deep-sea sediment cores south of the Polar Front have been significantly constrained by the lack of a...

Full description

Bibliographic Details
Main Author: Moreton, Steven G.
Format: Thesis
Language:English
Published: 1999
Subjects:
Online Access:https://eprints.glos.ac.uk/4865/
https://eprints.glos.ac.uk/4865/1/Moreton%20phd.pdf
id ftunigloucesters:oai::4865
record_format openpolar
spelling ftunigloucesters:oai::4865 2023-05-15T13:38:09+02:00 Quaternary Tephrochronology of the Scotia Sea and Bellingshausen Sea, Antarctica Moreton, Steven G. 1999-09-01 text https://eprints.glos.ac.uk/4865/ https://eprints.glos.ac.uk/4865/1/Moreton%20phd.pdf en eng https://eprints.glos.ac.uk/4865/1/Moreton%20phd.pdf Moreton, Steven G. (1999) Quaternary Tephrochronology of the Scotia Sea and Bellingshausen Sea, Antarctica. PhD thesis, University of Gloucestershire. all_rights GC Oceanography Thesis NonPeerReviewed 1999 ftunigloucesters 2022-03-16T20:01:54Z The Southern Ocean is a region of the world's ocean which is fundamental to the generation of cold deep ocean water which drives the global thermo-haline circulation. Previous investigations of deep-sea sediment cores south of the Polar Front have been significantly constrained by the lack of a suitable correlation and dating technique. In this study, deep-sea sediment cores from the Bellingshausen, Scotia and Weddell seas have been investigated for the presence of tephra layers. The major oxide and trace element composition of glass shards have been used to correlate tephra isochrones over distances in excess of 600 km. The source volcanoes for individual tephra layers have been identified. Atmospheric transport distances greater than 1500 km for >32 μm shards are reported. One megascopic tephra is identified and correlated across 7 sediment drifts on the continental rise in the Bellingshausen Sea. Its occurrence in a sedimentary unit that has been biostratigraphically dated to δ^18 0 substage 5e identifies it as a key regional marker horizon for that stage. An unusual bimodal megascopic ash layer erupted from Deception Island, South Shetland Islands, has been correlated between 6 sediment cores which form a 600 km NW-SW transect from the central Scotia Sea to Jane Basin. The megascopic ash layer has been ^14C dated at 10,670 years BP. It represents the last significant input of tephra into the Scotia Sea or Jane Basin from that volcano and forms an important early Holocene marker horizon for the region. Five disseminated tephras can be correlated to varying extents across the central Scotia Sea cores. Together with the megascopic tephra they form a tephrostratigraphic framework that will greatly aid palaeoclimatic, palaeoenvironmental and palaeoceanographic investigations in the region. Thesis Antarc* Antarctica Bellingshausen Sea Deception Island Scotia Sea South Shetland Islands Southern Ocean University of Gloucestershire: Research Repository Bellingshausen Sea Deception Island ENVELOPE(-60.633,-60.633,-62.950,-62.950) Jane Basin ENVELOPE(-41.909,-41.909,-61.890,-61.890) Scotia Sea South Shetland Islands Southern Ocean Weddell
institution Open Polar
collection University of Gloucestershire: Research Repository
op_collection_id ftunigloucesters
language English
topic GC Oceanography
spellingShingle GC Oceanography
Moreton, Steven G.
Quaternary Tephrochronology of the Scotia Sea and Bellingshausen Sea, Antarctica
topic_facet GC Oceanography
description The Southern Ocean is a region of the world's ocean which is fundamental to the generation of cold deep ocean water which drives the global thermo-haline circulation. Previous investigations of deep-sea sediment cores south of the Polar Front have been significantly constrained by the lack of a suitable correlation and dating technique. In this study, deep-sea sediment cores from the Bellingshausen, Scotia and Weddell seas have been investigated for the presence of tephra layers. The major oxide and trace element composition of glass shards have been used to correlate tephra isochrones over distances in excess of 600 km. The source volcanoes for individual tephra layers have been identified. Atmospheric transport distances greater than 1500 km for >32 μm shards are reported. One megascopic tephra is identified and correlated across 7 sediment drifts on the continental rise in the Bellingshausen Sea. Its occurrence in a sedimentary unit that has been biostratigraphically dated to δ^18 0 substage 5e identifies it as a key regional marker horizon for that stage. An unusual bimodal megascopic ash layer erupted from Deception Island, South Shetland Islands, has been correlated between 6 sediment cores which form a 600 km NW-SW transect from the central Scotia Sea to Jane Basin. The megascopic ash layer has been ^14C dated at 10,670 years BP. It represents the last significant input of tephra into the Scotia Sea or Jane Basin from that volcano and forms an important early Holocene marker horizon for the region. Five disseminated tephras can be correlated to varying extents across the central Scotia Sea cores. Together with the megascopic tephra they form a tephrostratigraphic framework that will greatly aid palaeoclimatic, palaeoenvironmental and palaeoceanographic investigations in the region.
format Thesis
author Moreton, Steven G.
author_facet Moreton, Steven G.
author_sort Moreton, Steven G.
title Quaternary Tephrochronology of the Scotia Sea and Bellingshausen Sea, Antarctica
title_short Quaternary Tephrochronology of the Scotia Sea and Bellingshausen Sea, Antarctica
title_full Quaternary Tephrochronology of the Scotia Sea and Bellingshausen Sea, Antarctica
title_fullStr Quaternary Tephrochronology of the Scotia Sea and Bellingshausen Sea, Antarctica
title_full_unstemmed Quaternary Tephrochronology of the Scotia Sea and Bellingshausen Sea, Antarctica
title_sort quaternary tephrochronology of the scotia sea and bellingshausen sea, antarctica
publishDate 1999
url https://eprints.glos.ac.uk/4865/
https://eprints.glos.ac.uk/4865/1/Moreton%20phd.pdf
long_lat ENVELOPE(-60.633,-60.633,-62.950,-62.950)
ENVELOPE(-41.909,-41.909,-61.890,-61.890)
geographic Bellingshausen Sea
Deception Island
Jane Basin
Scotia Sea
South Shetland Islands
Southern Ocean
Weddell
geographic_facet Bellingshausen Sea
Deception Island
Jane Basin
Scotia Sea
South Shetland Islands
Southern Ocean
Weddell
genre Antarc*
Antarctica
Bellingshausen Sea
Deception Island
Scotia Sea
South Shetland Islands
Southern Ocean
genre_facet Antarc*
Antarctica
Bellingshausen Sea
Deception Island
Scotia Sea
South Shetland Islands
Southern Ocean
op_relation https://eprints.glos.ac.uk/4865/1/Moreton%20phd.pdf
Moreton, Steven G. (1999) Quaternary Tephrochronology of the Scotia Sea and Bellingshausen Sea, Antarctica. PhD thesis, University of Gloucestershire.
op_rights all_rights
_version_ 1766101996592431104