Analysis of the Most Intense Explosive Cyclone that Occurred Between 2010 and 2020 in the South Atlantic

The coastal region of South America is known for the high frequency of extratropical cyclones. From 2010 to 2020, there was an exceptional case regarding intensity, reaching 2.73 Bergeron, between January 02 and 03, 2019. To better understand the characteristics of this type of explosive cyclone, th...

Full description

Bibliographic Details
Published in:Revista Brasileira de Geografia Física
Main Authors: Andrade, Hugo Nunes, Nunes, André Becker, Alves, Rita de Cássia Marques
Other Authors: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Format: Article in Journal/Newspaper
Language:English
Published: Universidade Federal de Pernambuco 2022
Subjects:
Online Access:https://periodicos.ufpe.br/revistas/rbgfe/article/view/254666
https://doi.org/10.26848/rbgf.v15.6.p2781-2795
id ftunifpernambojs:oai:oai.periodicos.ufpe.br:article/254666
record_format openpolar
institution Open Polar
collection Portal de Periódicos - UFPE (Universidade Federal de Pernambuco)
op_collection_id ftunifpernambojs
language English
topic Meteorologia
Bombogênese
Fluxos de Calor
Tropopausa Dinâmica
ERA5
Análise Sinótica
Ciclones Explosivos
spellingShingle Meteorologia
Bombogênese
Fluxos de Calor
Tropopausa Dinâmica
ERA5
Análise Sinótica
Ciclones Explosivos
Andrade, Hugo Nunes
Nunes, André Becker
Alves, Rita de Cássia Marques
Analysis of the Most Intense Explosive Cyclone that Occurred Between 2010 and 2020 in the South Atlantic
topic_facet Meteorologia
Bombogênese
Fluxos de Calor
Tropopausa Dinâmica
ERA5
Análise Sinótica
Ciclones Explosivos
description The coastal region of South America is known for the high frequency of extratropical cyclones. From 2010 to 2020, there was an exceptional case regarding intensity, reaching 2.73 Bergeron, between January 02 and 03, 2019. To better understand the characteristics of this type of explosive cyclone, this work sought to investigate the synoptic conditions in this phenomenon. To this end, a visual inspection method of the sea level pressure charts was applied, allied with the functions available in the Grid Analysis and Display software. The cyclone began by transitioning from the continental low to the extratropical cyclone, associated with a trough at higher levels in a zone of weak temperature advection. As the system developed, there was a fracture in the upper air trough, acquiring negative horizontal inclination and the transition of the cyclone from the tropical to the polar side of the jet streak. Sea heat fluxes become relevant only 6 hours after cyclogenesis and enhance as the surface wind increases in the cold sector of the cyclone. In addition, a robust stratospheric ozone intrusion arose close to 700 hPa in the cyclone region, related to the dynamic tropopause folding.Keywords: Bombogenesis, Heat Fluxes, Dynamic Tropopause, ERA5, Synoptic Analysis. Análise do ciclone explosivo mais intenso ocorrido no período entre 2010 e 2020 no Atlântico SulR E S U M OA região da costa da América do Sul é conhecida pela alta frequência de ciclones extratropicais. Durante o período de 2010 a 2020, houve um caso excepcional com relação à intensidade, atingindo 2,73 Bergeron, entre 02 e 03 de janeiro de 2019. Para entender melhor as características associadas com este tipo de ciclone explosivo, este trabalho buscou investigar as condições sinóticas ocorridas neste fenômeno. Para tal, foi aplicado um método de inspeção visual das cartas de pressão ao nível médio do mar, aliado a funções disponíveis no software Grid Analysis and Display. O ciclone iniciou através da transição da baixa continental ao ciclone extratropical ...
author2 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
format Article in Journal/Newspaper
author Andrade, Hugo Nunes
Nunes, André Becker
Alves, Rita de Cássia Marques
author_facet Andrade, Hugo Nunes
Nunes, André Becker
Alves, Rita de Cássia Marques
author_sort Andrade, Hugo Nunes
title Analysis of the Most Intense Explosive Cyclone that Occurred Between 2010 and 2020 in the South Atlantic
title_short Analysis of the Most Intense Explosive Cyclone that Occurred Between 2010 and 2020 in the South Atlantic
title_full Analysis of the Most Intense Explosive Cyclone that Occurred Between 2010 and 2020 in the South Atlantic
title_fullStr Analysis of the Most Intense Explosive Cyclone that Occurred Between 2010 and 2020 in the South Atlantic
title_full_unstemmed Analysis of the Most Intense Explosive Cyclone that Occurred Between 2010 and 2020 in the South Atlantic
title_sort analysis of the most intense explosive cyclone that occurred between 2010 and 2020 in the south atlantic
publisher Universidade Federal de Pernambuco
publishDate 2022
url https://periodicos.ufpe.br/revistas/rbgfe/article/view/254666
https://doi.org/10.26848/rbgf.v15.6.p2781-2795
geographic Alta
geographic_facet Alta
genre Advances in Polar Science
Polar Science
Polar Science
genre_facet Advances in Polar Science
Polar Science
Polar Science
op_source Brazilian Journal of Physical Geography; v. 15, n. 6 (2022): Revista Brasileira de Geografia Física; 2781-2795
Revista Brasileira de Geografia Física; v. 15, n. 6 (2022): Revista Brasileira de Geografia Física; 2781-2795
1984-2295
op_relation https://periodicos.ufpe.br/revistas/rbgfe/article/view/254666/42826
https://periodicos.ufpe.br/revistas/rbgfe/article/downloadSuppFile/254666/41429
Allen, J.T.; Pezza, A.B.; Black, M.T., 2010. Explosive cyclogenesis: A global climatology comparing multiple reanalyses. Journal of Climate, 23, 6468-6484.
Andrade, H. N. Análise dos Casos de Ciclones Explosivos no Atlântico Sul em 2014 e 2015 de Acordo com Diferentes Resoluções Espaciais de Reanálises. 53 f. Trabalho de Conclusão de Curso (Graduação em Meteorologia) – Universidade Federal de Pelotas, Pelotas, 2019.
Avila, V.D.; Nunes, A.B.; Alves, R.C.M., 2016. Análise de um caso de ciclogênese explosiva ocorrido em 03/01/2014 no sul do Oceano Atlântico. Revista Brasileira de Geografia Física, 9, 1088-1099.
Avila, V.D.; Nunes, A.B.; Alves, R.C.M., 2021. Comparing explosive cyclogenesis of different intensities occurred in Southern Atlantic. Anais da Academia Brasileira de Ciências, 93, 1-23.
Aragão, L.; Porcù, F., 2022. Cyclonic activity in the Mediterranean region from a high-resolution perspective using ECMWF ERA5 dataset. Climate Dynamics, 58, 1293-1310.
Bitencourt, D.P.; Fuentes, M.V.; Cardoso, C.S., 2013. Climatologia de ciclones explosivos para a área ciclogenética da América do Sul. Revista Brasileira de Meteorologia, 28, 43-56.
Bluestein, H.B. Synoptic-dynamic meteorology in midlatitudes. Volume II: Observations and theory of weather systems. New York: Oxford University Press, 1993. 594 p.
Bosart, L.F., 1981. The Presidents’ Day snowstorm of 18-19 February 1979. A subsynoptic-scale event. Monthly Weather Review, 109, 1542-1566.
Bosart, L.F.; Lin, S.C., 1984. A diagnostic analysis of the Presidents’ Day Storm of February 1979. Monthly Weather Review, 112, 2148-2177.
Caballero, C.B.; Ogassawara, J.F.; Dorneles, V.R.; Nunes, A.B.; 2018. Precipitação pluviométrica em Pelotas/RS: tendência, sistemas sinóticos associados e influência da ODP. Revista Brasileira da Geografia Física, 11, 1429-1441.
Catto, J.L.; Ackerley, D.; Booth, J.F.; Champion, A.J.; Colle, B.A.; Pfahl, S.; Pinto, J.G.; Quinting, J.F.; Seiler, C., 2019. The Future of Midlatitude Cyclones. Current Climate Change Reports, 5, 407-420.
Chen, S.; Kuo, Y.; Zhang, P.; Bai, Q., 1992. Notes and Correspondence. Climatology of Explosive Cyclones off the East Asian coast. Monthly Weather Review, 120, 3029-3035.
Cossetin, F.; Nunes, A.B.; Teixeira, M.S., 2016. Análise do Movimento Vertical sob Duas Diferentes Configurações de Altos Níveis da Troposfera. Ciência e Natura, 38, 484- 490.
Davis, C.A.; Emanuel, K.A., 1988. Observational evidence for the influence of surface heat fluxes on rapid maritime cyclogenesis. Monthly Weather Review, 116, 2649-2659.
Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; Bechtold, P.; Beljaars, A.C.M.; van de Berg, L.; Bidlot, J.; Bormann, N.; Delsol, C.; Dragani, R.; Fuentes, M.; Geer, A.J.; Haimberger, L.; Healy, S.B.; Hersbach, H.; Hólm, E.V.; Isaksen, L.; Kållberg, P.; Köhler, M.; Matricardi, M.; McNally, A.P.; Monge-Sanz, B.M.; Morcrette, J.-J.; Park, B.-K.; Peubey, C.; de Rosnay, P.; Tavolato, C.; Thépaut, J.-N.; Vitart, F., 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553-597.
Gertler, C.G.; O’Gorman, P.A., 2019. Changing available energy for extratropical cyclones and associated convection in Northern Hemisphere summer. Earth, Atmospheric, and Planetary Sciences, 116, 4105-4110.
Glickman, T.; MacDonald, N.J.; Sanders, F., 1977. New Findings and the Apparent Relationship between Convective Activity and the Shape of 500 mb Troughs. Monthly Weather Review, 105, 1060.
Gramcianinov, C.B.; Campos, R.M.; Camargo, R.; Hodges, K.I.; Guedes Soares, C.; Silva Dias, P.L., 2020. Analysis of Atlantic extratropical storm tracks characteristics in 41 years of ERA5 and CFSR/CFSv2 databases. Ocean Engineering, 216, 108111.
Gramcianinov, C.B.; Hodges, K.I.; Camargo, R., 2019. The properties and genesis environments of South Atlantic cyclones. Climate Dynamics, 53, 4115-4140. Gyakum, J. R., 1983a. On the Evolution of the QE II Storm. I: Synoptic Aspects. Monthly Weather Review 111, 1137-1155.
Gyakum, J. R., 1983b. On the Evolution of the QE II Storm. II: Dynamic and Thermodynamic Structure. Monthly Weather Review 111, 1156- 1173.
Heo, K-Y.; Seo, Y-W.; Ha, K-J.; Park, K-S.; Kim, J.; Choi, J-W.; Jun, K.; Jeong, J-Y., 2015. Development mechanisms of an explosive cyclone over East Sea on 3-4 April 2012. Dynamics of Atmospheres and Oceans, 70, 30-46.
Heo, K-Y.; Ha, K-J.; Ha, T., 2019. Explosive Cyclogenesis around the Korean Peninsula in May 2016 from a Potential Vorticity Perspective: Case Study and Numerical Simulations. Atmosphere, 10, 322, 1-19. Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; Simmonds, A.; Soci, C.; Abdalla, S.; Abellan, X.; Balsamo, G.; Bechtold, P.; Biavati, G.; Bidlot, J.; Bonavita, M.; De Chiara, G.; Dahlgren, P.; Dee, D.; Diamantakis, M.; Dragani, R.; Flemming, J.; Forbes, R.; Fuentes, M.; Geer, A.; Haimberger, L.; Healy, S.; Hogan, R.J.; Hólm, E.; Janisková, M.; Keeley, S.; Laloyaux, P.; Lopez, P.; Lupu, C.; Radnoti, G.; De Rosnay, P.; Rozum, I.; Vamborg, F.; Villaume, S.; Thépaut, J.N., 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049.
Hirschberg, P.A.; Fritsch, J.M., 1991. Tropopause undulations and the development of extratropical cyclones. Part I: Overview and observations from a cyclone event. Monthly Weather Review, 119, 496-517.
Hoskins, B.J.; Mcintyre, M.E.; Robertson, A.W., 1985. On the use and significance of isentropic potential vorticity maps. Quarterly Journal of the Royal Meteorological Society, 111, 877-946.
Kodama, C.; Stevens, B.; Mauritsen, T.; Seiki, T.; Satoh, M., 2019. A New Perspective for Future Precipitation Change from Intense Extratropical Cyclones. Geophysical Research Letters, 46, 12435-12444.
Kousky, V.E.; Elias, M. Meteorologia Sinótica: Parte I. São José dos Campos: INPE, 1982.118 p.
Kuwano-Yoshida, A.; Asuma, Y., 2004. Structures and environment of explosively developing extratropical cyclones in the northwestern Pacific region, Monthly Weather Review, 132, 1121-1142.
Kuwano-Yoshida, A.; Asuma, Y., 2008. Numerical study of explosively developing extratropical cyclones in the Northwestern Pacific region. Monthly Weather Review, 136, 712-740.
Kuwano-Yoshida, A.; Enomoto, T., 2013. Predictability of explosive cyclogenesis over the Northwestern Pacific region using ensemble Reanalysis. Monthly Weather Review, 141, 3769-3785.
Liberato, M. L. R., 2014. The 19 January 2013 windstorm over the North Atlantic: large-scale dynamics and impacts on Iberia. Weather Climate Extremes 5, 16–28.
Liberato, M. L. R.; Pinto, J. G.; Trigo, I. F.; Trigo, R. M., 2011. Klaus – an exceptional winter storm over northern Iberia and southern France. Weather 66, 330–334.
Lim, E.P.; Simmonds, I., 2002. Explosive cyclone development in the Southern Hemisphere and a comparison with Northern Hemisphere events. Monthly Weather Review, 130, 2188-2209.
Lionello, P.; Trigo, I.F.; Gil, V.; Liberato, M.L.; Nissen, K.M.; Pinto, J.G.; Raible, C.C.; Reale, M.; Tanzarella, A.; Trigo, R.M.; Ulbrich, S.; Ulbrich, U., 2016 Objective climatology of cyclones in the Mediterranean region: a consensus view among methods with different system identification and tracking criteria. Tellus A: Dynamic Meteorology and Oceanography, v.68, n.1, 2016.
Macdonald, N., 1976. On the Apparent Relationship Between Convective Activity and the Shape of 500 mb Troughs. Monthly Weather Review, 104, 1618-1622.
Nunes, A.B.; Avila, V.D., 2017. Dynamic Tropopause Anomaly: Case Study in South America. Anuário do Instituto de Geociências, 40, 83-92.
Pang, H.; Fu, G.; Lu, C., 2022. Structure of the Potential Vorticity of an Explosive Cyclone over the Eastern Asian Region in Late November 2013. Journal of Ocean University of China, 21, 253-263.
Peixoto, J.P.; Oort, A.H. Physics of Climate. New York: American Institute of Physics, 520 p.
Pettersen, S.; Smebye, S.J., 1971. On the development of extratropical cyclones. Quarterly Journal of The Royal Meteorological Society 97, 457-482.
Piva, E. D., GAN, M.A., MOSCATI, M.C.L., 2011. The role of latent and sensible heat fluxes in an explosive cyclogenesis over the South American East Coast. Journal of Meteorological Society of Japan, 89, 637-663.
Pezzi, L.P.; Quadro, M.F.L.; Lorenzzetti, J.A.; Miller, A.J.; Rosa, E.B.; Lima, L.N.; Sutil, U.A., 2022. The effect of Oceanic South Atlantic Convergence Zone episodes on regional SST anomalies: the roles of heat fluxes and upper-ocean dynamics. Climate Dynamics. Disponível em: https://doi.org/10.1007/s00382-022-06195-3
Reale, M.; Liberato, M.L.R.; Lionello, P.; Pinto, J.G.; SALON, S.; ULBRICH, S., 2019. A global climatology of explosive cyclones using a multi-tracking approach. Tellus A: Dynamic Meteorology and Oceanography, 71, 1-19.
Reale, M.; Lionello, P., 2013. Synoptic climatology of winter intense precipitation events along the Mediterranean coast. Natural Hazards and Earth System Sciences, 13, 1707-1722.
Reboita, M.S. Ciclones Extratropicais sobre o Atlântico Sul: Simulação Climática e Experimentos de Sensibilidade. 359 f. Tese (Doutorado em Meteorologia) - Instituto de Astronomia, Geofísica e Ciências Atmosféricas – IAG – USP, São Paulo, 2008.
Reboita, M.S.; Crespo, N.M.; Torres, J.A.; Reale, M.; Rocha, R.P.; Giorgi, F.; Coppola, E., 2021. Future Changes in winter explosive cyclones over the Southern Hemisphere domains from the CORDEX-CORE ensemble. Climate Dynamics, 57, 3303-3322.
Reboita, M.S.; Gozzo, L.F.; Crespo, N.M.; Custodio, M.S.; Lucyrio, V.; De Jesus, E.M.; Rocha, R.P., 2022. From a Shapiro-Keyser extratropical cyclone to the subtropical cyclone Raoni: An unusual winter synoptic situation over the South Atlantic Ocean. Quarterly Journal of the Royal Meteorological Society, 148, 1-19.
Reboita, M.S.; Rocha, R.P.; Ambrizzi, T.; Suguhara, S., 2010. South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Climate Dynamics, 35, 1331-1347.
Reis, P.A.; Aquino, F.E.; Schossler, V.; Bernardo, R.T.; Simões, J.C., 2020. Tropical-Antarctic connections of an explosive cyclone in Southern Brazil: rainfall stable isotope ratios and atmospheric analysis. Advances in Polar Science, 31, 103-111.
Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Gi-Kong, K.; Bloom, S.; Chen, J.; Collins, D.; Conaty, A.; Silva, A.; Gu, W.; Joiner, J.; Koster, R.D.; Lucchesi, R.; Molod, A.; Owens, T.; Pawson, S.; Pegion, P.; Redder; C.R.; Reichle, R.; Robertson, F.R.; Ruddick; A.G.; Sienkiewiks, M.; Woollen, J., 2011. MERRA: NASA's Modern-Era Retrospective Analysis Research and Applications. Journal of Climate 24, 3624-3648.
op_rights Direitos autorais 2022 Revista Brasileira de Geografia Física
https://creativecommons.org/licenses/by/4.0
op_doi https://doi.org/10.26848/rbgf.v15.6.p2781-279510.1007/s00382-022-06195-3
container_title Revista Brasileira de Geografia Física
container_volume 15
container_issue 6
container_start_page 2781
op_container_end_page 2795
_version_ 1768389695069224960
spelling ftunifpernambojs:oai:oai.periodicos.ufpe.br:article/254666 2023-06-11T04:03:01+02:00 Analysis of the Most Intense Explosive Cyclone that Occurred Between 2010 and 2020 in the South Atlantic Andrade, Hugo Nunes Nunes, André Becker Alves, Rita de Cássia Marques Coordenação de Aperfeiçoamento de Pessoal de Nível Superior 2022-12-09 application/pdf https://periodicos.ufpe.br/revistas/rbgfe/article/view/254666 https://doi.org/10.26848/rbgf.v15.6.p2781-2795 eng eng Universidade Federal de Pernambuco https://periodicos.ufpe.br/revistas/rbgfe/article/view/254666/42826 https://periodicos.ufpe.br/revistas/rbgfe/article/downloadSuppFile/254666/41429 Allen, J.T.; Pezza, A.B.; Black, M.T., 2010. Explosive cyclogenesis: A global climatology comparing multiple reanalyses. Journal of Climate, 23, 6468-6484. Andrade, H. N. Análise dos Casos de Ciclones Explosivos no Atlântico Sul em 2014 e 2015 de Acordo com Diferentes Resoluções Espaciais de Reanálises. 53 f. Trabalho de Conclusão de Curso (Graduação em Meteorologia) – Universidade Federal de Pelotas, Pelotas, 2019. Avila, V.D.; Nunes, A.B.; Alves, R.C.M., 2016. Análise de um caso de ciclogênese explosiva ocorrido em 03/01/2014 no sul do Oceano Atlântico. Revista Brasileira de Geografia Física, 9, 1088-1099. Avila, V.D.; Nunes, A.B.; Alves, R.C.M., 2021. Comparing explosive cyclogenesis of different intensities occurred in Southern Atlantic. Anais da Academia Brasileira de Ciências, 93, 1-23. Aragão, L.; Porcù, F., 2022. Cyclonic activity in the Mediterranean region from a high-resolution perspective using ECMWF ERA5 dataset. Climate Dynamics, 58, 1293-1310. Bitencourt, D.P.; Fuentes, M.V.; Cardoso, C.S., 2013. Climatologia de ciclones explosivos para a área ciclogenética da América do Sul. Revista Brasileira de Meteorologia, 28, 43-56. Bluestein, H.B. Synoptic-dynamic meteorology in midlatitudes. Volume II: Observations and theory of weather systems. New York: Oxford University Press, 1993. 594 p. Bosart, L.F., 1981. The Presidents’ Day snowstorm of 18-19 February 1979. A subsynoptic-scale event. Monthly Weather Review, 109, 1542-1566. Bosart, L.F.; Lin, S.C., 1984. A diagnostic analysis of the Presidents’ Day Storm of February 1979. Monthly Weather Review, 112, 2148-2177. Caballero, C.B.; Ogassawara, J.F.; Dorneles, V.R.; Nunes, A.B.; 2018. Precipitação pluviométrica em Pelotas/RS: tendência, sistemas sinóticos associados e influência da ODP. Revista Brasileira da Geografia Física, 11, 1429-1441. Catto, J.L.; Ackerley, D.; Booth, J.F.; Champion, A.J.; Colle, B.A.; Pfahl, S.; Pinto, J.G.; Quinting, J.F.; Seiler, C., 2019. The Future of Midlatitude Cyclones. Current Climate Change Reports, 5, 407-420. Chen, S.; Kuo, Y.; Zhang, P.; Bai, Q., 1992. Notes and Correspondence. Climatology of Explosive Cyclones off the East Asian coast. Monthly Weather Review, 120, 3029-3035. Cossetin, F.; Nunes, A.B.; Teixeira, M.S., 2016. Análise do Movimento Vertical sob Duas Diferentes Configurações de Altos Níveis da Troposfera. Ciência e Natura, 38, 484- 490. Davis, C.A.; Emanuel, K.A., 1988. Observational evidence for the influence of surface heat fluxes on rapid maritime cyclogenesis. Monthly Weather Review, 116, 2649-2659. Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; Bechtold, P.; Beljaars, A.C.M.; van de Berg, L.; Bidlot, J.; Bormann, N.; Delsol, C.; Dragani, R.; Fuentes, M.; Geer, A.J.; Haimberger, L.; Healy, S.B.; Hersbach, H.; Hólm, E.V.; Isaksen, L.; Kållberg, P.; Köhler, M.; Matricardi, M.; McNally, A.P.; Monge-Sanz, B.M.; Morcrette, J.-J.; Park, B.-K.; Peubey, C.; de Rosnay, P.; Tavolato, C.; Thépaut, J.-N.; Vitart, F., 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553-597. Gertler, C.G.; O’Gorman, P.A., 2019. Changing available energy for extratropical cyclones and associated convection in Northern Hemisphere summer. Earth, Atmospheric, and Planetary Sciences, 116, 4105-4110. Glickman, T.; MacDonald, N.J.; Sanders, F., 1977. New Findings and the Apparent Relationship between Convective Activity and the Shape of 500 mb Troughs. Monthly Weather Review, 105, 1060. Gramcianinov, C.B.; Campos, R.M.; Camargo, R.; Hodges, K.I.; Guedes Soares, C.; Silva Dias, P.L., 2020. Analysis of Atlantic extratropical storm tracks characteristics in 41 years of ERA5 and CFSR/CFSv2 databases. Ocean Engineering, 216, 108111. Gramcianinov, C.B.; Hodges, K.I.; Camargo, R., 2019. The properties and genesis environments of South Atlantic cyclones. Climate Dynamics, 53, 4115-4140. Gyakum, J. R., 1983a. On the Evolution of the QE II Storm. I: Synoptic Aspects. Monthly Weather Review 111, 1137-1155. Gyakum, J. R., 1983b. On the Evolution of the QE II Storm. II: Dynamic and Thermodynamic Structure. Monthly Weather Review 111, 1156- 1173. Heo, K-Y.; Seo, Y-W.; Ha, K-J.; Park, K-S.; Kim, J.; Choi, J-W.; Jun, K.; Jeong, J-Y., 2015. Development mechanisms of an explosive cyclone over East Sea on 3-4 April 2012. Dynamics of Atmospheres and Oceans, 70, 30-46. Heo, K-Y.; Ha, K-J.; Ha, T., 2019. Explosive Cyclogenesis around the Korean Peninsula in May 2016 from a Potential Vorticity Perspective: Case Study and Numerical Simulations. Atmosphere, 10, 322, 1-19. Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; Simmonds, A.; Soci, C.; Abdalla, S.; Abellan, X.; Balsamo, G.; Bechtold, P.; Biavati, G.; Bidlot, J.; Bonavita, M.; De Chiara, G.; Dahlgren, P.; Dee, D.; Diamantakis, M.; Dragani, R.; Flemming, J.; Forbes, R.; Fuentes, M.; Geer, A.; Haimberger, L.; Healy, S.; Hogan, R.J.; Hólm, E.; Janisková, M.; Keeley, S.; Laloyaux, P.; Lopez, P.; Lupu, C.; Radnoti, G.; De Rosnay, P.; Rozum, I.; Vamborg, F.; Villaume, S.; Thépaut, J.N., 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049. Hirschberg, P.A.; Fritsch, J.M., 1991. Tropopause undulations and the development of extratropical cyclones. Part I: Overview and observations from a cyclone event. Monthly Weather Review, 119, 496-517. Hoskins, B.J.; Mcintyre, M.E.; Robertson, A.W., 1985. On the use and significance of isentropic potential vorticity maps. Quarterly Journal of the Royal Meteorological Society, 111, 877-946. Kodama, C.; Stevens, B.; Mauritsen, T.; Seiki, T.; Satoh, M., 2019. A New Perspective for Future Precipitation Change from Intense Extratropical Cyclones. Geophysical Research Letters, 46, 12435-12444. Kousky, V.E.; Elias, M. Meteorologia Sinótica: Parte I. São José dos Campos: INPE, 1982.118 p. Kuwano-Yoshida, A.; Asuma, Y., 2004. Structures and environment of explosively developing extratropical cyclones in the northwestern Pacific region, Monthly Weather Review, 132, 1121-1142. Kuwano-Yoshida, A.; Asuma, Y., 2008. Numerical study of explosively developing extratropical cyclones in the Northwestern Pacific region. Monthly Weather Review, 136, 712-740. Kuwano-Yoshida, A.; Enomoto, T., 2013. Predictability of explosive cyclogenesis over the Northwestern Pacific region using ensemble Reanalysis. Monthly Weather Review, 141, 3769-3785. Liberato, M. L. R., 2014. The 19 January 2013 windstorm over the North Atlantic: large-scale dynamics and impacts on Iberia. Weather Climate Extremes 5, 16–28. Liberato, M. L. R.; Pinto, J. G.; Trigo, I. F.; Trigo, R. M., 2011. Klaus – an exceptional winter storm over northern Iberia and southern France. Weather 66, 330–334. Lim, E.P.; Simmonds, I., 2002. Explosive cyclone development in the Southern Hemisphere and a comparison with Northern Hemisphere events. Monthly Weather Review, 130, 2188-2209. Lionello, P.; Trigo, I.F.; Gil, V.; Liberato, M.L.; Nissen, K.M.; Pinto, J.G.; Raible, C.C.; Reale, M.; Tanzarella, A.; Trigo, R.M.; Ulbrich, S.; Ulbrich, U., 2016 Objective climatology of cyclones in the Mediterranean region: a consensus view among methods with different system identification and tracking criteria. Tellus A: Dynamic Meteorology and Oceanography, v.68, n.1, 2016. Macdonald, N., 1976. On the Apparent Relationship Between Convective Activity and the Shape of 500 mb Troughs. Monthly Weather Review, 104, 1618-1622. Nunes, A.B.; Avila, V.D., 2017. Dynamic Tropopause Anomaly: Case Study in South America. Anuário do Instituto de Geociências, 40, 83-92. Pang, H.; Fu, G.; Lu, C., 2022. Structure of the Potential Vorticity of an Explosive Cyclone over the Eastern Asian Region in Late November 2013. Journal of Ocean University of China, 21, 253-263. Peixoto, J.P.; Oort, A.H. Physics of Climate. New York: American Institute of Physics, 520 p. Pettersen, S.; Smebye, S.J., 1971. On the development of extratropical cyclones. Quarterly Journal of The Royal Meteorological Society 97, 457-482. Piva, E. D., GAN, M.A., MOSCATI, M.C.L., 2011. The role of latent and sensible heat fluxes in an explosive cyclogenesis over the South American East Coast. Journal of Meteorological Society of Japan, 89, 637-663. Pezzi, L.P.; Quadro, M.F.L.; Lorenzzetti, J.A.; Miller, A.J.; Rosa, E.B.; Lima, L.N.; Sutil, U.A., 2022. The effect of Oceanic South Atlantic Convergence Zone episodes on regional SST anomalies: the roles of heat fluxes and upper-ocean dynamics. Climate Dynamics. Disponível em: https://doi.org/10.1007/s00382-022-06195-3 Reale, M.; Liberato, M.L.R.; Lionello, P.; Pinto, J.G.; SALON, S.; ULBRICH, S., 2019. A global climatology of explosive cyclones using a multi-tracking approach. Tellus A: Dynamic Meteorology and Oceanography, 71, 1-19. Reale, M.; Lionello, P., 2013. Synoptic climatology of winter intense precipitation events along the Mediterranean coast. Natural Hazards and Earth System Sciences, 13, 1707-1722. Reboita, M.S. Ciclones Extratropicais sobre o Atlântico Sul: Simulação Climática e Experimentos de Sensibilidade. 359 f. Tese (Doutorado em Meteorologia) - Instituto de Astronomia, Geofísica e Ciências Atmosféricas – IAG – USP, São Paulo, 2008. Reboita, M.S.; Crespo, N.M.; Torres, J.A.; Reale, M.; Rocha, R.P.; Giorgi, F.; Coppola, E., 2021. Future Changes in winter explosive cyclones over the Southern Hemisphere domains from the CORDEX-CORE ensemble. Climate Dynamics, 57, 3303-3322. Reboita, M.S.; Gozzo, L.F.; Crespo, N.M.; Custodio, M.S.; Lucyrio, V.; De Jesus, E.M.; Rocha, R.P., 2022. From a Shapiro-Keyser extratropical cyclone to the subtropical cyclone Raoni: An unusual winter synoptic situation over the South Atlantic Ocean. Quarterly Journal of the Royal Meteorological Society, 148, 1-19. Reboita, M.S.; Rocha, R.P.; Ambrizzi, T.; Suguhara, S., 2010. South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Climate Dynamics, 35, 1331-1347. Reis, P.A.; Aquino, F.E.; Schossler, V.; Bernardo, R.T.; Simões, J.C., 2020. Tropical-Antarctic connections of an explosive cyclone in Southern Brazil: rainfall stable isotope ratios and atmospheric analysis. Advances in Polar Science, 31, 103-111. Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Gi-Kong, K.; Bloom, S.; Chen, J.; Collins, D.; Conaty, A.; Silva, A.; Gu, W.; Joiner, J.; Koster, R.D.; Lucchesi, R.; Molod, A.; Owens, T.; Pawson, S.; Pegion, P.; Redder; C.R.; Reichle, R.; Robertson, F.R.; Ruddick; A.G.; Sienkiewiks, M.; Woollen, J., 2011. MERRA: NASA's Modern-Era Retrospective Analysis Research and Applications. Journal of Climate 24, 3624-3648. Direitos autorais 2022 Revista Brasileira de Geografia Física https://creativecommons.org/licenses/by/4.0 Brazilian Journal of Physical Geography; v. 15, n. 6 (2022): Revista Brasileira de Geografia Física; 2781-2795 Revista Brasileira de Geografia Física; v. 15, n. 6 (2022): Revista Brasileira de Geografia Física; 2781-2795 1984-2295 Meteorologia Bombogênese Fluxos de Calor Tropopausa Dinâmica ERA5 Análise Sinótica Ciclones Explosivos info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2022 ftunifpernambojs https://doi.org/10.26848/rbgf.v15.6.p2781-279510.1007/s00382-022-06195-3 2023-04-18T11:30:23Z The coastal region of South America is known for the high frequency of extratropical cyclones. From 2010 to 2020, there was an exceptional case regarding intensity, reaching 2.73 Bergeron, between January 02 and 03, 2019. To better understand the characteristics of this type of explosive cyclone, this work sought to investigate the synoptic conditions in this phenomenon. To this end, a visual inspection method of the sea level pressure charts was applied, allied with the functions available in the Grid Analysis and Display software. The cyclone began by transitioning from the continental low to the extratropical cyclone, associated with a trough at higher levels in a zone of weak temperature advection. As the system developed, there was a fracture in the upper air trough, acquiring negative horizontal inclination and the transition of the cyclone from the tropical to the polar side of the jet streak. Sea heat fluxes become relevant only 6 hours after cyclogenesis and enhance as the surface wind increases in the cold sector of the cyclone. In addition, a robust stratospheric ozone intrusion arose close to 700 hPa in the cyclone region, related to the dynamic tropopause folding.Keywords: Bombogenesis, Heat Fluxes, Dynamic Tropopause, ERA5, Synoptic Analysis. Análise do ciclone explosivo mais intenso ocorrido no período entre 2010 e 2020 no Atlântico SulR E S U M OA região da costa da América do Sul é conhecida pela alta frequência de ciclones extratropicais. Durante o período de 2010 a 2020, houve um caso excepcional com relação à intensidade, atingindo 2,73 Bergeron, entre 02 e 03 de janeiro de 2019. Para entender melhor as características associadas com este tipo de ciclone explosivo, este trabalho buscou investigar as condições sinóticas ocorridas neste fenômeno. Para tal, foi aplicado um método de inspeção visual das cartas de pressão ao nível médio do mar, aliado a funções disponíveis no software Grid Analysis and Display. O ciclone iniciou através da transição da baixa continental ao ciclone extratropical ... Article in Journal/Newspaper Advances in Polar Science Polar Science Polar Science Portal de Periódicos - UFPE (Universidade Federal de Pernambuco) Alta Revista Brasileira de Geografia Física 15 6 2781 2795