Variabilidade espaço-temporal da coluna total de ozônio e sua relação com a radiação ultravioleta na América do Sul

O ozônio (O3) representa menos de 1% dos gases da atmosfera terrestre, entretanto, é indispensável para a vida na Terra, devido sua influência no balanço energético do planeta filtrando a Radiação Ultravioleta (RUV) do tipo UV-B, nociva à saúde. O objetivo geral deste trabalho é investigar o impacto...

Full description

Bibliographic Details
Published in:Revista Brasileira de Geografia Física
Main Authors: Dias Nunes, Mateus, Mariano, Glauber Lopes, Alonso, Marcelo Félix
Other Authors: CAPES/CNPq
Format: Article in Journal/Newspaper
Language:Portuguese
Published: Universidade Federal de Pernambuco 2020
Subjects:
Online Access:https://periodicos.ufpe.br/revistas/rbgfe/article/view/244554
https://doi.org/10.26848/rbgf.v13.5.p2053-2073
id ftunifpernambojs:oai:oai.periodicos.ufpe.br:article/244554
record_format openpolar
institution Open Polar
collection Portal de Periódicos - UFPE (Universidade Federal de Pernambuco)
op_collection_id ftunifpernambojs
language Portuguese
topic Meteorologia
Sensoriamento Remoto
Radiação Solar
Sensor OMI
Dose Eritêmica Diária
spellingShingle Meteorologia
Sensoriamento Remoto
Radiação Solar
Sensor OMI
Dose Eritêmica Diária
Dias Nunes, Mateus
Mariano, Glauber Lopes
Alonso, Marcelo Félix
Variabilidade espaço-temporal da coluna total de ozônio e sua relação com a radiação ultravioleta na América do Sul
topic_facet Meteorologia
Sensoriamento Remoto
Radiação Solar
Sensor OMI
Dose Eritêmica Diária
description O ozônio (O3) representa menos de 1% dos gases da atmosfera terrestre, entretanto, é indispensável para a vida na Terra, devido sua influência no balanço energético do planeta filtrando a Radiação Ultravioleta (RUV) do tipo UV-B, nociva à saúde. O objetivo geral deste trabalho é investigar o impacto da coluna total de ozônio sobre a variabilidade da RUV na América do Sul, utilizando dados diários de RUV e Coluna Total de Ozônio (CTO) do sensor Ozone Monitoring Instrument (OMI) da Aura/NASA (National Aeronautics and Space Administration). Na análise mensal, o valor médio da coluna total de ozônio para o decênio de 2005 a 2014 apresentou uma maior variabilidade no trimestre SON na região da América do Sul. A Análise de Componentes Principais mostrou que nos meses JJA e SON apresenta-se uma correlação direta entre CTO e RUV. As análises dos casos estudados comprovaram que apenas os baixos níveis de ozônio não são determinantes para os altos valores de RUV. Os meses entre julho e outubro apresentam grandes áreas no da América do Sul com forte correlação inversa apresentando regiões estatisticamente significantes. Os resultados exprimem a relação entre a CTO e RUV que dependente da sazonalidade nas diferentes regiões, entre outros fatores. Spatio-temporal variability of total ozone column and ultraviolet radiation: assessment of relationship in South America A B S T R A C T Ozone (O3) represents less than 1% of the earth's atmosphere gases, however, it is indispensable for life on Earth, due to its influence on the planet's energy balance as well as filtering out harmful UV-B type UVR-B the health. The general objective of this work is to investigate the impact of the total ozone column on UVR variability in South America, using daily Aura/NASA Ozone Monitoring Instrument (OMI) sensor and Total Column Ozone (TOC) data daily. National Aeronautics and Space Administration). In the monthly analysis, the average value of the total ozone column for the decade from 2005 to 2014 showed a greater variability in the SON ...
author2 CAPES/CNPq
format Article in Journal/Newspaper
author Dias Nunes, Mateus
Mariano, Glauber Lopes
Alonso, Marcelo Félix
author_facet Dias Nunes, Mateus
Mariano, Glauber Lopes
Alonso, Marcelo Félix
author_sort Dias Nunes, Mateus
title Variabilidade espaço-temporal da coluna total de ozônio e sua relação com a radiação ultravioleta na América do Sul
title_short Variabilidade espaço-temporal da coluna total de ozônio e sua relação com a radiação ultravioleta na América do Sul
title_full Variabilidade espaço-temporal da coluna total de ozônio e sua relação com a radiação ultravioleta na América do Sul
title_fullStr Variabilidade espaço-temporal da coluna total de ozônio e sua relação com a radiação ultravioleta na América do Sul
title_full_unstemmed Variabilidade espaço-temporal da coluna total de ozônio e sua relação com a radiação ultravioleta na América do Sul
title_sort variabilidade espaço-temporal da coluna total de ozônio e sua relação com a radiação ultravioleta na américa do sul
publisher Universidade Federal de Pernambuco
publishDate 2020
url https://periodicos.ufpe.br/revistas/rbgfe/article/view/244554
https://doi.org/10.26848/rbgf.v13.5.p2053-2073
op_coverage Sul da América do Sul
Década
genre Arctic
genre_facet Arctic
op_source Brazilian Journal of Physical Geography; v. 13, n. 5 (2020): Revista Brasileira de Geografia Física; 2053-2073
Revista Brasileira de Geografia Física; v. 13, n. 5 (2020): Revista Brasileira de Geografia Física; 2053-2073
1984-2295
op_relation https://periodicos.ufpe.br/revistas/rbgfe/article/view/244554/36893
https://periodicos.ufpe.br/revistas/rbgfe/article/downloadSuppFile/244554/32477
Alkemade, F. J. M. Empirical Orthogonal Function (EOF) Analysis of ozone variability., 1995. In: Studies In Environmental Science. Elsevier p. 275-278. https://doi.org/10.1016/S0166-1116(06)80211-6 André, I. R. N., Ferreira, N. J., Conforte, J. C. Análise do comportamento do ozônio estratosférico na américa do sul e vizinhanças utilizando-se imagens do satélite Nimbus7/TOMS. Simpósio Brasileiro De Sensoriamento Remoto, 11. 2003. Belo Horizonte - Mg. Anais. Belo Horizonte - Mg, 2003. Aun, M., Lakkala, K., Sanchez, R., Asmi, E., Nollas, F., Meinander, O., Sogacheva, L., De Bock, V., Arola, A., de Leeuw, G., Aaltonen, V., Bolsee, D., Cizkova, K., Mangold, A., Metelka, L., Jakobson, E., Svendby, T., Gillotay, D., Van Opstal, B. UV radiation measurements in Marambio, Antarctica during years 2017–2019 in a wider temporal and spatial context. Atmospheric Chemistry and Physics, Discuss., https://doi.org/10.5194/acp-2019-896, in review, 2019. Bais, A. F., Mckenzie, R. L., Bernhard, G., Aucamp, p. J., Ilyas, M., Madronich, S., Tourpali, K., 2015. ozone depletion and climate change: Impacts on Uv radiation. Photochemical & Photobiological Sciences, v. 14, n. 1, p. 19-52. https://doi:10.1039/c4pp90032d. Ball, W. T., Kuchar, A., Rozanov, E. v., Staehelin, J., Tummon, F., Smith, A. K., Schmutz, W., 2016. An upper-branch Brewer-Dobson circulation index for attribution of stratospheric variability and improved ozone and temperature trend analysis. Atmospheric Chemistry and Physics, v. 16, n. 24, p. 15485-15500. https://doi.org/10.5194/acp-16-15485-2016 Ball, W. T., Alsing, J., Staehelin, J., Davis, S. M., Froidevaux, L., Peter, T., 2019. Stratospheric ozone trends for 1985–2018: sensitivity to recent large variability. Atmospheric Chemistry and Physics Discuss, 19, 12731–12748. https://doi.org/10.5194/acp-19-12731-2019 Bencherif, H., Amraoui, L. E., Kirgis, G., Bellevue, J. L. D., Hauchecorne, A., Mzé, n., Portafaix, T., Pazmino, A., Goutail, F., 2011. Analysis of a rapid increase of stratospheric ozone during late austral summer 2008 over Kerguelen (49.4 E, 70.3e). Atmospheric Chemistry and Physics, Copernicus Gmbh, v. 11, n. 1, p. 363–373. Bittencourt, G. D., Bresciani, C., Pinheiro, D. K., Bageston, J. v., Schuch, n. J., Bencherif, H., Leme, n. P., Peres, L. v., 2018. A Major Event of Antarctic Ozone Hole Influence In Southern Brazil In October 2016: An Analysis of Tropospheric and Stratospheric Dynamics. Annales Geophysicae, v. 36, n. 2, p. 415–424. https://doi.org/10.5194/angeo-36-415-2018. Bittencourt, G. D., Pinheiro, D. K., Bageston, J. V., Bencherif, H., Steffenel, L. A., Vaz Peres, L, 2019. Investigation of the behavior of the atmospheric dynamics during occurrences of the ozone hole's secondary effect in southern Brazil, Annales GeophysicaeBencherif, H., Amraoui, L. E., Kirgis, G., Bellevue, J. L. D., Hauchecorne, A., Mzé, n., Portafaix, T., Pazmino, A., Goutail, F., 2011. Analysis of a rapid increase of stratospheric ozone during late austral summer 2008 over Kerguelen (49.4 E, 70.3e). Atmospheric Chemistry and Physics, Copernicus Gmbh, v. 11, n. 1, p. 363–373., 37, 1049–1061, https://doi.org/10.5194/angeo-37-1049-2019. Bombardi, R. J., Carvalho, L. M. v., 2017. Simple practices in climatological analyses: A review. Revista Brasileira de Meteorologia, v. 32, n. 3, p. 311-320. https://doi.org/10.1590/0102-77863230001 Bracci, A., Cristofanelli, P., Sprenger, M., Bonafe, U., Calzolari, F., Duchi, R., Laj, P., Marinoni, A., Roccato, F., Vuillermoz, E., Bonasoni, P., 2012. Transport of stratospheric air masses to the Nepal Climate Observatory-Pyramid (Himalaya; 5079 M Msl): A Synoptic-Scale Investigation. Journal of Applied Meteorology and Climatology, v. 51, n. 8, p. 1489-1507. https://doi.org/10.1175/JAMC-D-11-0154.1 Braesicke, P., Keeble, J., Yang, X., Stiller, G., Kellmann, S., Abraham, n., Archibald, A., Telford, P., Pyle, J., 2013. Circulation anomalies in the Southern Hemisphere and ozone changes. Atmospheric Chemistry and Physics, Copernicus Gmbh, v. 13, n. 21, p. 10677-10688. https://doi.org/10.5194/acp-14-10431-2014 Bresciani, C., Bittencourt, G. D., Bageston, J. V., Pinheiro, D. K., Schuch, N. J., Bencherif, H., Leme, N. P., Peres, L. V, 2018. Report of a large depletion in the ozone layer over southern Brazil and Uruguay by using multi-instrumental data. Annales Geophysicae, 36, 405–413, https://doi.org/10.5194/angeo-36-405-2018. Butchart, N., 2014. The Brewer-Dobson circulation. Reviews of Geophysics, v. 52, n. 2, p. 157-184. https://doi.org/10.1002/2013RG000448 Camp, C. D., Roulston, M. S., Yung, Y. L. , 2003. Temporal and spatial patterns of the interannual variability of total ozone in the tropics. Journal of Geophysical Research: Atmospheres, v. 108, n. D20. https://doi.org/10.1029/2001JD001504. Cavalcanti, I. F. A., Ferreira n. J., Silva M. G. A. J., Silva Dias M. A. F., 2009. Tempo e clima no Brasil. oficina De Textos, São Paulo; 463 p. Chiodo, G., Polvani, L. M., Marsh, D. R., Stenke, A., Ball, W., Rozanov, E., Muthers, S., Tsigaridis, K., 2018. The response of the ozone layer to quadrupled CO2 concentrations. Journal of Climate, v. 31, n. 10, p. 3893–3907. https://doi.org/10.1175/JCLI-D-19-0086.1 Coariti, J. R., Fernandez, J. H., Spyrides, M. H. C., de Paula Corrêa, M., Leme, N. P., Pedra, G. U., & da Silva, F. R. 2018. Metodologia para validação de dados coletados por espectrofotômetros Brewer (Data validation methodology for Brewer Spectrophotometer operating). Revista Brasileira de Geografia Física, 11(2), 601-611. Cohen, Y., Petetin, H., Thouret, v., Marécal, v., Josse, B., Clark, H., Boulanger, D., 2018. Climatology and long-term evolution of ozone and carbon monoxide in The Upper Troposphere Lower Stratosphere ( UTLS ) at northern midlatitudes, as seen by Iagos from 1995 to 2013. Atmospheric Chemistry and Physics, v. 18, n. 8, p. 5415-5453. https://doi.org/10.5194/acp-18-5415-2018. Corrêa, M., Plana-Fattori, A., 2006. Uma análise das variações do índice ultravioleta em relação às observações de conteúdo de ozônio e da espessura óptica dos aerossóis sobre a cidade de são paulo. Revista Brasileira De Meteorologia, v. 21, n. 1, p. 24–32. Damiani, A., Cordero, R. R., Cabrera, S., Laurenza, M., Rafanelli, C., 2014. cloud cover and UV index estimates in Chile from satellite-derived and ground-based data. Atmospheric Research, v. 138, p. 139-151. https://doi.org/10.1016/j.atmosres.2013.11.006 Dennison, F. W., A. J. McDonald, and O. Morgenstern, 2016. The influence of ozone forcing on blocking in the Southern Hemisphere, Journal Geophysical Ressearch: Atmososphere, 121, 14, 358–14, 371, doi:10.1002/2016JD025033. Dobson, G. M. B. , 1968. Forty years’ research on atmospheric ozone at Oxford: A history. Applied Optics, Optical Society of America, v. 7, n. 3, p. 387–405. https://doi.org/10.1364/AO.7.000387 Du Preez, D., Ajti, J., Bencherif, H., Bèngue, n., Cadet, J. M., Wright, C., Ajtic, J., 2019. Spring and summer time ozone and solar ultraviolet radiation variations over Cape Point, South Africa. In: Annales Geophysicae. p. 129-141. https://doi.org/10.5194/angeo-37-129-2019 Echer, E., Souza, M., Schuch, n., 2001. The Beer’s Law applied to the earth’s atmosphere. Revista Brasileira de Ensino de Física, Scielo Brasil, v. 23, n. 3, p. 276–283. Fioletov, v. Ozone climatology, trends, and substances that control ozone., 2008. Atmosphere-Ocean, Taylor & Francis, v. 46, n. 1, p. 39-67. https://doi.org/10.3137/ao.460103 Gettelman, A., Hoor, P., Pan, L., Randel, W., Hegglin, M. I., Birner, T., 2011. The Extratropical Upper Troposphere and Lower Stratosphere. Reviews of Geophysics, Wiley Online Library, v. 49, n. 3. https://doi.org/10.1029/2011RG000355 Gonzalez, p. L., Polvani, L. M., Seager, R., Correa, G. J., 2014. Stratospheric Ozone Depletion: A key driver of recent precipitation trends in south eastern South America. Climate Dynamics, Springer, v. 42, n. 7-8, p. 1775-1792. https://doi.org/1010.1007/s00382-013-1777-x Grise, K. M., Polvani, L. M., Tselioudis, G., Wu, Y., Zelinka, M. D., 2013. The ozone hole indirect effect: cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern Hemisphere. Geophysical Research Letters, Wiley Online Library, v. 40, n. 14, p. 3688-3692. https://doi.org/10.1002/grl.50675 Grise, K. M., Son, S.-W., Correa, G. J., Polvani, L. M., 2014. The response of extratropical cyclones in the Southern Hemisphere to stratospheric ozone depletion in the 20th century. Atmospheric Science Letters, Wiley Online Library, v. 15, n. 1, p. 29-36. https://doi.org/10.1002/asl2.458 Grimm, A. M., 2009. Clima da região sul do Brasil. Tempo E Clima No Brasil. São Paulo: oficina De Textos, p. 259-275. Guarnieri, R. A., Padilha, L. F., Guarnieri, F. L., Echer, E., Makita, K., Pinheiro, D. K., Schuch, A. M. P., Boeira, L. S., Schuch, N. J., 2004. A study of the anticorrelations between ozone and UV-B radiation using linear and exponential fits in southern Brazil. Advances In Space Research, v. 34, p. 764–768. https://doi.org/10.1016/j.asr.2003.06.040 Hauchecorne, A., Godin, S., Marchand, M., Heese, B., Souprayen, C., 2002. Quantification of the transport of chemical constituents from the polar vortex to midlatitudes in the lower stratosphere using the high-resolution advection model MIMOSA and effective diffusivity. Journal of Geophysical Research: Atmospheres, Wiley Online Library, v. 107, n. D20, p. 3 2. http://doi.org/10.1029/2001JD000491 Hegglin, M., Gettelman, A., Hoor, P., Krichevsky, R., Manney, G., Pan, L., Son, S.-W., Stiller, G., Tilmes, S., Walker, K., 2010. Multimodel assessment of the Upper Troposphere and Lower Stratosphere: Extratropics. Journal of Geophysical Research: Atmospheres, Wiley Online Library, v. 115, n. D3. https://doi.org/10.1029/2010JD013884 Hupfer, N. T., Kall, E., Peres, L. V., Schuch, N. J., Pinheiro, D. K., Lemes, N. M. p. Comparação da radiação ultravioleta quando da ocorrência dos eventos de efeitos secundários do buraco de ozônio antártico sobre o sul do Brasil dos dias 16/10/2003 e 28/09/2008. In: Society of Exploration Geophysicists and Brazilian Geophysical Society. 12th International Congress of The Brazilian Geophysical Society & Expogef, Rio De Janeiro, Brazil, 15–18 August 2011. [S.L.], 2011. p. 2035–2038. Janjai, S., Wisitsirikun, S., Buntoung, S., Pattarapanitchai, S., Wattan, R., Masiri, I., Bhattarai, B. K., 2014. Comparison of UV Index From Ozone Monitoring Instrument (Omi) With Multi‐Channel Filter Radiometers At Four Sites In The Tropics: Effects of Aerosols and Clouds. International Journal of Climatology, v. 34, n. 2, p. 453-461. https://doi.org/10.1002/joc.3698 Kirchhoff, v. W. J. H., Schuch, n. J., Pinheiro, D. K., Harris, J. M., 1996. Evidence for an ozone hole perturbation at 30° south. Atmospheric Environment, v. 33, n. 9, p. 1481-1488. Krotkov, N. A., Carn, S. A., Krueger, A. J., Bhartia, P. K., Yang, K., 2006. Band Residual Difference algorithm for retrieval of so2 from the Aura Ozone Monitoring Instrument (OMI). Ieee Transactions On Geoscience and Remote Sensing, IEEE, v. 44, n. 5, p. 1259-1266. https://doi.org/10.1109/TGRS.2005.861932 Krzyścin, J. W., 1996. UV controlling factors and trends derived from the ground-based measurements taken at Belsk, Poland, 1976–1994. Journal of Geophysical Research: Atmospheres, Wiley Online Library, v. 101, n. D11, p. 16797–16805. Lamy, K., Portafaix, T., Brogniez, C., Godin-Beekmann, S., Bencherif, H., Morel, B., Pazmino, A., Metzger, J. M., Auriol, F., Deroo, C., Duflot, V., Goloub, P., and Long, C. N, 2018. Ultraviolet radiation modelling from ground-based and satellite measurements on Reunion Island, southern tropics, Atmospheric Chemistry Physics, 18, 227 -246, https://doi.org/10.5194/acp-18-227-2018. Lenzi, E; Favero, L. O. B. Introdução À Química Da Atmosfera: Ciência, Vida E Sobrevivência. Grupo Gen-Ltc, 2000. Levelt, P. F., Joiner, J., Tamminen, J., Veefkind, J. P., Bhartia, p. K., Zweers, D. C. S., Duncan, B. n., Streets, D.G., Eskes, H., Van Der, R. A., Mclinden, C., Fioletov, v., Carn, S., De Laat, J., Deland, M., Marchenko, S., Mcpeters, R., Ziemke, J., Fu, D., Liu, X., Pickering, K., Apituley, A., Abad, G. G., Arola, A., Boersma, F., Miller, C. C., Chance, K., De Graaf, M., Hakkarainen, J., Hassinen, S., Ialongo, I., Kleipool, Q., Krotkov, n., Li, C., Lamsal, L., Newman, P., Nowlan, C., Suleiman, R., Tilstra, L., G., Torres, O., Wang, H., Wargan, K., 2018. The Ozone Monitoring Instrument: Overview of 14 years in space. Atmospheric Chemistry and Physics, v. 18, n. 8, p. 5699-5745. https://doi.org/10.5194/acp-18-5699-2018 London, J. Observed Distribution of Atmospheric Ozone and Its Variations. In: Whitten, R. C., Prasad, S. S. Ed. Ozone In The Free Atmosphere. New York: Van Nostrand Reinhold. Cap. 1, p. 11–80. 1985. Lopo, A. B., Spyrides, M. H. C., Lucio, P. S., Sigró, J., 2013. radiação ultravioleta, ozônio total e aerossóis na cidade de Natal-Rn. Holos, v. 6, p. 3-21. Lu, J., Xie, F., Tian, W., Li, J., Feng, W., Chipperfield, M., Ma, X. Interannual Camp, Charles D., Roulston, Mark S.; Yung, Yuk L., 2019. Temporal and spatial patterns of the interannual variability of total ozone in the tropics. Journal of Geophysical Research: Atmospheres, v. 108, n. D20, 2003.Variations In Lower Stratospheric Ozone During The Period 1984–2016. Journal of Geophysical Research: Atmospheres, v. 124, n. 14, p. 8225-8241. Mariano, E. V. C, Mariano, G. L, Moura, M. A. L, 2017. Reações fotoquímicas na troposfera e estratosfera, in: Mariano, G. L, Nunes, A, B. Meteorologia em Tópicos: Volume 5. Clube dos Autores, Pelotas, pp. 171-200. Maycock, A., 2016. The contribution of ozone to future stratospheric temperature trends. Geophysical Research Letters, Wiley Online Library, v. 43, n. 9, p. 4609-4616. https://doi.org/10.1002/2016GL068511 McPeters, R., Frith, S., Labow, G., 2015. OMI total column ozone: extending the long-term data record. Atmospheric Measurement Techniques, Copernicus Gmbh, v. 8, n. 11, p. 4845–4850. https://doi.org/10.5194/amt-8-4845-2015 Mohanakumar, K. Stratosphere troposphere interactions: An introduction. Springer Netherlands, 2009. ISBN 9789048119424. Nozawa H., Yamamoto H., Makita, K., Schuch n. J., Pinheiro D. K., Carbone S., Mac-Mahon, R. M., Foppiano A. J., 2007. Ground-Based Observation of Solar UV Radiation In Japan, Brazil and Chile. Revista Brasileira De Geofísica, v. 25, p. 17-25. OMI Team Et Al. Ozone Monitoring Instrument (Omi) Data User’s Guide. Washington Dc: Nasa, 2012. Oberländer-Hayn, S., Gerber, E. P., Abalichin, J. A., Hideharu K., Andreas K., A, (2016). Is the Brewer-Dobson circulation increasing or moving upward? Geophysical Research Letters, 43, 1772-1779. https://doi.org/10.1002/2015GL067545 Peres, L. V., Reis, N. Cordero Simões Dos; Santos, L. De Oliveira Dos; Bittencourt, G. D., Schuch, A. P., Anabor, v., Pinheiro, D. K., Schuch, n. J., Leme, N. M. P., 2016. Análise atmosférica dos eventos de efeito secundário do buraco de ozônio antártico sobre o sul do Brasil em 2012. parte 1: identificação dos eventos e análise da dinâmica da estratosfera. Ciência E Natura, Universidade Federal De Santa Maria, v. 38, n. 1. Peres, L.V., Bencherif, H., Mbatha, n., Schuch, A.P., Toihir, A. M., Bègue, n., Portafaix, T., Anabor, V., Pinheiro, D. K; Leme, N. M. P., Bageston, J.V., Schuch, N. J., 2017. Measurements of the total ozone column using a Brewer spectrophotometer and TOMS and OMI satellite instruments over the southern space observatory in Brazil. Annales Geophysicae, v. 35, p. 25-37. https://doi.org/10.5194/angeo-35-25-2017 Peres, L. V., Pinheiro, D. K., Steffenel, L. A., Mendes, D., Bageston, J. v., Bittencourt, G. D., Schuch, A. P., Anabor, V., Leme, N. M. P., Schuch, N. J., 2019. Monitoramento de longo prazo e climatologia de campos estratosféricos quando da ocorrência dos eventos de influência do buraco de ozônio antártico sobre o sul do Brasil. Revista Brasileira De Meteorologia, Scielo Brasil, v. 34, n. 1, p. 151-163. https://doi.org/10.1590/0102-77863340030 Ploeger, F., Konopka, P., Mueller, R., Fueglistaler, S., Schmidt, T., Manners, J. C., Grooss, J. U., Guenther, G., Forster, p. M., Riese, M., 2012. Horizontal transport affecting trace gas seasonality in the Tropical Tropopause Layer (TTL). Journal of Geophysical Research: Atmospheres, v. 117, n. D09303. Polvani, L. M., Wang, L., Abalos, M., Butchart, n., Chipperfield, M. P., Dameris, M., Stone, K. A., 2019. Large impacts, past and future, of ozone-depleting substances on Brewer-Dobson circulation trends: A multimodel assessment. Journal of Geophysical Research: Atmospheres. v. 124, p. 6669–6680. https://doi.org/10.1029/2018JD029516 Polichtchouk, I., Shepherd, T. G., Hogan, R. J., Bechtold, P. , 2018. Sensitivity of The Brewer–Dobson circulation and polar vortex variability to parameterized nonorographic gravity wave drag in a high-resolution atmospheric model. Journal of the Atmospheric Sciences, v. 75, n. 5, p. 1525-1543. https://doi.org/10.1175/JAS-D-17-0304.1 Salby, M. L. Fundamentals of Atmospheric Physics. [S.L.]: Elsevier, 1996. Salby, M. L. Involvement of The Brewer–Dobson circulation in changes of stratospheric temperature and ozone. Dynamics of Atmospheres and Oceans, v. 44, n. 3-4, p. 143-164. Schmalfuss, L. S. M., Mariano, G. L., Pinheiro, D. K., & Peres, L. V. (2014). Análise dos dois principais fatores de decaimento da coluna total de Ozônio sobre o sul da América do Sul. Ciência e Natura, 36 (2), 415-422. Seinfeld, J. H., Pandis, S. N., 2016. Atmospheric Chemistry and Physics: From Air Pollution To Climate Change. John Wiley & Sons. Sliney, D. H. , 2007. Radiometric quantities and units used in photobiology and photochemistry: recommendations of the commission internationale de L’eclairage (International Commission On Illumination). Photochemistry and Photobiology, v. 83, n. 2, p. 425-432. https://doi.org/10.1562/2006-11-14-RA-1081 Shepherd, T. G., 2008. Dynamics, stratospheric ozone, and climate change. Atmosphere-Ocean, Taylor & Francis, v. 46, n. 1, p. 117–138. https://doi:10.3137/ao.460106 Slusser, J., Gibson, J., Bigelow, D., Kolinski, D., Mou, W., Koenig, G., Beaubien, A., 1999. Comparison of column ozone retrievals by use of an UV multifilter rotating shadow-band radiometer with those from Brewer and Dobson spectrophotometers. Applied Optics, Optical Society of America, v. 38, n. 9, p. 1543–1551. https://doi.org/10.1364/AO.38.001543 Solomon, S., Haskins, J., Ivy, D. J., Min, F., 2014. Fundamental differences between Arctic and Antarctic ozone depletion. Proceedings of the National Academy of Sciences, 111(17), 6220–6225. doi:10.1073/pnas.1319307111 Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely, R. R., & Schmidt, A. (2016). Emergence of healing in the Antarctic ozone layer. Science, 353(6296), 269–274.doi:10.1126/science.aae0061 Son, S. W., Gerber, E. P., Perlwitz, J., Polvani, L. M., Gillett, N. P., Seo, K. H., Austin, J. (2010). Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. Journal of Geophysical Research: Atmospheres, 115(D3). https://doi.org/10.1029/2010JD014271 Stohl, A., Wernli, H., Bourqui, M., Forster, C., James, P., Liniger, M. A., Seibert, P., Sprenger, M. 2003. A New perspective of Stratosphere-Troposphere Exchange. Bull. Amer. Meteor. Soc., v. 84, p. 1565-1573. https://doi.org/10.1175/BAMS-84-11-1565 Tanskanen, A., Lindfors, A., Määttä, A., Krotkov, N., Herman, J., Kaurola, J., McKenzie, R. (2007). Validation of daily erythemal doses from Ozone Monitoring Instrument with ground‐based UV measurement data. Journal of Geophysical Research: Atmospheres,112(D24). https://doi.org/10.1029/2007JD008830 Toihir, A. M., Portafaix, T., Sivakumar, v., Bencherif, H., Pazmiño, A., Bèngue, n. Variability and Trend In Ozone Over The Southern Tropics and Subtropics, Annales Geophysicae, 36, 381-404, 2018. https://doi.org/10.5194/angeo-36-381-2018 Thompson, D. W. J; Wallace, J. M., 2000. Annular Modes in the extratropical circulation. Part I: Month-to-month variability. Journal of Climate, v. 13, n. 5, p. 1000-1016. https://doi.org/10.1175/1520-0442 Vargin, P. N., Nikiforova, M. P., Zvyagintsev, A. M. 2020. Variability of the Antarctic ozone anomaly in 2011-2018. Russian Meteorology and Hydrology, 45(2), 63-73. doi:10.3103/S1068373920020016 Veefkind, J. P., Haan, J. F. De; Brinksma, E. J., Kroon, M., Levelt, P. F., 2006. Total Ozone from the Ozone Monitoring Instrument (OMI) Using The DOAS Technique. Ieee Transactions On Geoscience and Remote Sensing, Ieee, v. 44, n. 5, p. 1239–1244. Xie, F., Li, J., Tian, W., Zhang, J., & Shu, J., 2014. The impacts of two types of El Niño on global ozone variations in the last three decades. advances In Atmospheric Sciences, v. 31, n. 5, p. 1113-1126. https://10.1007/s00376-013-3166-0 Wakamatsu, S., Uno, I., Ueda, H., Uehara, K., Tateishi, H., 1989. Observational study of stratospheric ozone intrusions into the Lower Troposphere. Atmospheric Environment (1967), Elsevier, v. 23, n. 8, p. 18151826. Weber, M., Dikty, S., Burrows, J. P., Garny, H., Dameris, M., Kubin, A. J., Abalichin, J., Langematz, U., 2011. The Brewer-Dobson circulation and total ozone from seasonal to decadal time scales. Atmospheric Chemistry and Physics, v. 11, p. 11221–11235. https://doi.org/10.5194/acp-11-11221-2011 Wilks, D. S., 2006 Statistical Methods in The Atmospheric Science. California, Usa. 2ed. Academic Press. Wilson, R. C., Fleming, Z. L., Monks, p. S., Clain, G., Henne, S., Konovalov, I. B., Menut, L., 2011. Have primary emission reduction measures reduced ozone across Europe? An analysis of european rural background ozone trends 1996–2005. Atmospheric Chemistry and Physics Discuss, v. 11, p. 18433-18485. https://doi.org/10.5194/acp-12-437-2012 Young, P. J., Rosenlof, K. H., Solomon, S., Sherwood, S. C., Fu, Q., Lamarque, J. F., 2012. Changes in stratospheric temperatures and their implications for changes in the Brewer Dobson circulation, 1979-2005. Journal of Climate, v. 25, n. 5, p. 1759–1772. https://doi.org/10.1175/2011JCLI4048.1 Yamamoto, A. L. C., Corrêa, M. D. P., Ccoyllo, O. R. S., 2018. Validation and Analysis of UV Radiation Time Series Collected In Different Peruvian Sites. Revista Brasileira De Meteorologia, Scielo Brasil, V. 33, N. 2, P. 298–305. https://doi.org/10.1590/0102-7786332011.
https://periodicos.ufpe.br/revistas/rbgfe/article/view/244554
doi:10.26848/rbgf.v13.5.p2053-2073
op_rights Direitos autorais 2020 Revista Brasileira de Geografia Física
https://creativecommons.org/licenses/by/4.0
op_doi https://doi.org/10.26848/rbgf.v13.5.p2053-207310.5194/acp-2019-896
container_title Revista Brasileira de Geografia Física
container_volume 13
container_issue 5
container_start_page 2053
_version_ 1768380994627305472
spelling ftunifpernambojs:oai:oai.periodicos.ufpe.br:article/244554 2023-06-11T04:07:52+02:00 Variabilidade espaço-temporal da coluna total de ozônio e sua relação com a radiação ultravioleta na América do Sul Dias Nunes, Mateus Mariano, Glauber Lopes Alonso, Marcelo Félix CAPES/CNPq Sul da América do Sul Década 2020-07-30 application/pdf https://periodicos.ufpe.br/revistas/rbgfe/article/view/244554 https://doi.org/10.26848/rbgf.v13.5.p2053-2073 por por Universidade Federal de Pernambuco https://periodicos.ufpe.br/revistas/rbgfe/article/view/244554/36893 https://periodicos.ufpe.br/revistas/rbgfe/article/downloadSuppFile/244554/32477 Alkemade, F. J. M. Empirical Orthogonal Function (EOF) Analysis of ozone variability., 1995. In: Studies In Environmental Science. Elsevier p. 275-278. https://doi.org/10.1016/S0166-1116(06)80211-6 André, I. R. N., Ferreira, N. J., Conforte, J. C. Análise do comportamento do ozônio estratosférico na américa do sul e vizinhanças utilizando-se imagens do satélite Nimbus7/TOMS. Simpósio Brasileiro De Sensoriamento Remoto, 11. 2003. Belo Horizonte - Mg. Anais. Belo Horizonte - Mg, 2003. Aun, M., Lakkala, K., Sanchez, R., Asmi, E., Nollas, F., Meinander, O., Sogacheva, L., De Bock, V., Arola, A., de Leeuw, G., Aaltonen, V., Bolsee, D., Cizkova, K., Mangold, A., Metelka, L., Jakobson, E., Svendby, T., Gillotay, D., Van Opstal, B. UV radiation measurements in Marambio, Antarctica during years 2017–2019 in a wider temporal and spatial context. Atmospheric Chemistry and Physics, Discuss., https://doi.org/10.5194/acp-2019-896, in review, 2019. Bais, A. F., Mckenzie, R. L., Bernhard, G., Aucamp, p. J., Ilyas, M., Madronich, S., Tourpali, K., 2015. ozone depletion and climate change: Impacts on Uv radiation. Photochemical & Photobiological Sciences, v. 14, n. 1, p. 19-52. https://doi:10.1039/c4pp90032d. Ball, W. T., Kuchar, A., Rozanov, E. v., Staehelin, J., Tummon, F., Smith, A. K., Schmutz, W., 2016. An upper-branch Brewer-Dobson circulation index for attribution of stratospheric variability and improved ozone and temperature trend analysis. Atmospheric Chemistry and Physics, v. 16, n. 24, p. 15485-15500. https://doi.org/10.5194/acp-16-15485-2016 Ball, W. T., Alsing, J., Staehelin, J., Davis, S. M., Froidevaux, L., Peter, T., 2019. Stratospheric ozone trends for 1985–2018: sensitivity to recent large variability. Atmospheric Chemistry and Physics Discuss, 19, 12731–12748. https://doi.org/10.5194/acp-19-12731-2019 Bencherif, H., Amraoui, L. E., Kirgis, G., Bellevue, J. L. D., Hauchecorne, A., Mzé, n., Portafaix, T., Pazmino, A., Goutail, F., 2011. Analysis of a rapid increase of stratospheric ozone during late austral summer 2008 over Kerguelen (49.4 E, 70.3e). Atmospheric Chemistry and Physics, Copernicus Gmbh, v. 11, n. 1, p. 363–373. Bittencourt, G. D., Bresciani, C., Pinheiro, D. K., Bageston, J. v., Schuch, n. J., Bencherif, H., Leme, n. P., Peres, L. v., 2018. A Major Event of Antarctic Ozone Hole Influence In Southern Brazil In October 2016: An Analysis of Tropospheric and Stratospheric Dynamics. Annales Geophysicae, v. 36, n. 2, p. 415–424. https://doi.org/10.5194/angeo-36-415-2018. Bittencourt, G. D., Pinheiro, D. K., Bageston, J. V., Bencherif, H., Steffenel, L. A., Vaz Peres, L, 2019. Investigation of the behavior of the atmospheric dynamics during occurrences of the ozone hole's secondary effect in southern Brazil, Annales GeophysicaeBencherif, H., Amraoui, L. E., Kirgis, G., Bellevue, J. L. D., Hauchecorne, A., Mzé, n., Portafaix, T., Pazmino, A., Goutail, F., 2011. Analysis of a rapid increase of stratospheric ozone during late austral summer 2008 over Kerguelen (49.4 E, 70.3e). Atmospheric Chemistry and Physics, Copernicus Gmbh, v. 11, n. 1, p. 363–373., 37, 1049–1061, https://doi.org/10.5194/angeo-37-1049-2019. Bombardi, R. J., Carvalho, L. M. v., 2017. Simple practices in climatological analyses: A review. Revista Brasileira de Meteorologia, v. 32, n. 3, p. 311-320. https://doi.org/10.1590/0102-77863230001 Bracci, A., Cristofanelli, P., Sprenger, M., Bonafe, U., Calzolari, F., Duchi, R., Laj, P., Marinoni, A., Roccato, F., Vuillermoz, E., Bonasoni, P., 2012. Transport of stratospheric air masses to the Nepal Climate Observatory-Pyramid (Himalaya; 5079 M Msl): A Synoptic-Scale Investigation. Journal of Applied Meteorology and Climatology, v. 51, n. 8, p. 1489-1507. https://doi.org/10.1175/JAMC-D-11-0154.1 Braesicke, P., Keeble, J., Yang, X., Stiller, G., Kellmann, S., Abraham, n., Archibald, A., Telford, P., Pyle, J., 2013. Circulation anomalies in the Southern Hemisphere and ozone changes. Atmospheric Chemistry and Physics, Copernicus Gmbh, v. 13, n. 21, p. 10677-10688. https://doi.org/10.5194/acp-14-10431-2014 Bresciani, C., Bittencourt, G. D., Bageston, J. V., Pinheiro, D. K., Schuch, N. J., Bencherif, H., Leme, N. P., Peres, L. V, 2018. Report of a large depletion in the ozone layer over southern Brazil and Uruguay by using multi-instrumental data. Annales Geophysicae, 36, 405–413, https://doi.org/10.5194/angeo-36-405-2018. Butchart, N., 2014. The Brewer-Dobson circulation. Reviews of Geophysics, v. 52, n. 2, p. 157-184. https://doi.org/10.1002/2013RG000448 Camp, C. D., Roulston, M. S., Yung, Y. L. , 2003. Temporal and spatial patterns of the interannual variability of total ozone in the tropics. Journal of Geophysical Research: Atmospheres, v. 108, n. D20. https://doi.org/10.1029/2001JD001504. Cavalcanti, I. F. A., Ferreira n. J., Silva M. G. A. J., Silva Dias M. A. F., 2009. Tempo e clima no Brasil. oficina De Textos, São Paulo; 463 p. Chiodo, G., Polvani, L. M., Marsh, D. R., Stenke, A., Ball, W., Rozanov, E., Muthers, S., Tsigaridis, K., 2018. The response of the ozone layer to quadrupled CO2 concentrations. Journal of Climate, v. 31, n. 10, p. 3893–3907. https://doi.org/10.1175/JCLI-D-19-0086.1 Coariti, J. R., Fernandez, J. H., Spyrides, M. H. C., de Paula Corrêa, M., Leme, N. P., Pedra, G. U., & da Silva, F. R. 2018. Metodologia para validação de dados coletados por espectrofotômetros Brewer (Data validation methodology for Brewer Spectrophotometer operating). Revista Brasileira de Geografia Física, 11(2), 601-611. Cohen, Y., Petetin, H., Thouret, v., Marécal, v., Josse, B., Clark, H., Boulanger, D., 2018. Climatology and long-term evolution of ozone and carbon monoxide in The Upper Troposphere Lower Stratosphere ( UTLS ) at northern midlatitudes, as seen by Iagos from 1995 to 2013. Atmospheric Chemistry and Physics, v. 18, n. 8, p. 5415-5453. https://doi.org/10.5194/acp-18-5415-2018. Corrêa, M., Plana-Fattori, A., 2006. Uma análise das variações do índice ultravioleta em relação às observações de conteúdo de ozônio e da espessura óptica dos aerossóis sobre a cidade de são paulo. Revista Brasileira De Meteorologia, v. 21, n. 1, p. 24–32. Damiani, A., Cordero, R. R., Cabrera, S., Laurenza, M., Rafanelli, C., 2014. cloud cover and UV index estimates in Chile from satellite-derived and ground-based data. Atmospheric Research, v. 138, p. 139-151. https://doi.org/10.1016/j.atmosres.2013.11.006 Dennison, F. W., A. J. McDonald, and O. Morgenstern, 2016. The influence of ozone forcing on blocking in the Southern Hemisphere, Journal Geophysical Ressearch: Atmososphere, 121, 14, 358–14, 371, doi:10.1002/2016JD025033. Dobson, G. M. B. , 1968. Forty years’ research on atmospheric ozone at Oxford: A history. Applied Optics, Optical Society of America, v. 7, n. 3, p. 387–405. https://doi.org/10.1364/AO.7.000387 Du Preez, D., Ajti, J., Bencherif, H., Bèngue, n., Cadet, J. M., Wright, C., Ajtic, J., 2019. Spring and summer time ozone and solar ultraviolet radiation variations over Cape Point, South Africa. In: Annales Geophysicae. p. 129-141. https://doi.org/10.5194/angeo-37-129-2019 Echer, E., Souza, M., Schuch, n., 2001. The Beer’s Law applied to the earth’s atmosphere. Revista Brasileira de Ensino de Física, Scielo Brasil, v. 23, n. 3, p. 276–283. Fioletov, v. Ozone climatology, trends, and substances that control ozone., 2008. Atmosphere-Ocean, Taylor & Francis, v. 46, n. 1, p. 39-67. https://doi.org/10.3137/ao.460103 Gettelman, A., Hoor, P., Pan, L., Randel, W., Hegglin, M. I., Birner, T., 2011. The Extratropical Upper Troposphere and Lower Stratosphere. Reviews of Geophysics, Wiley Online Library, v. 49, n. 3. https://doi.org/10.1029/2011RG000355 Gonzalez, p. L., Polvani, L. M., Seager, R., Correa, G. J., 2014. Stratospheric Ozone Depletion: A key driver of recent precipitation trends in south eastern South America. Climate Dynamics, Springer, v. 42, n. 7-8, p. 1775-1792. https://doi.org/1010.1007/s00382-013-1777-x Grise, K. M., Polvani, L. M., Tselioudis, G., Wu, Y., Zelinka, M. D., 2013. The ozone hole indirect effect: cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern Hemisphere. Geophysical Research Letters, Wiley Online Library, v. 40, n. 14, p. 3688-3692. https://doi.org/10.1002/grl.50675 Grise, K. M., Son, S.-W., Correa, G. J., Polvani, L. M., 2014. The response of extratropical cyclones in the Southern Hemisphere to stratospheric ozone depletion in the 20th century. Atmospheric Science Letters, Wiley Online Library, v. 15, n. 1, p. 29-36. https://doi.org/10.1002/asl2.458 Grimm, A. M., 2009. Clima da região sul do Brasil. Tempo E Clima No Brasil. São Paulo: oficina De Textos, p. 259-275. Guarnieri, R. A., Padilha, L. F., Guarnieri, F. L., Echer, E., Makita, K., Pinheiro, D. K., Schuch, A. M. P., Boeira, L. S., Schuch, N. J., 2004. A study of the anticorrelations between ozone and UV-B radiation using linear and exponential fits in southern Brazil. Advances In Space Research, v. 34, p. 764–768. https://doi.org/10.1016/j.asr.2003.06.040 Hauchecorne, A., Godin, S., Marchand, M., Heese, B., Souprayen, C., 2002. Quantification of the transport of chemical constituents from the polar vortex to midlatitudes in the lower stratosphere using the high-resolution advection model MIMOSA and effective diffusivity. Journal of Geophysical Research: Atmospheres, Wiley Online Library, v. 107, n. D20, p. 3 2. http://doi.org/10.1029/2001JD000491 Hegglin, M., Gettelman, A., Hoor, P., Krichevsky, R., Manney, G., Pan, L., Son, S.-W., Stiller, G., Tilmes, S., Walker, K., 2010. Multimodel assessment of the Upper Troposphere and Lower Stratosphere: Extratropics. Journal of Geophysical Research: Atmospheres, Wiley Online Library, v. 115, n. D3. https://doi.org/10.1029/2010JD013884 Hupfer, N. T., Kall, E., Peres, L. V., Schuch, N. J., Pinheiro, D. K., Lemes, N. M. p. Comparação da radiação ultravioleta quando da ocorrência dos eventos de efeitos secundários do buraco de ozônio antártico sobre o sul do Brasil dos dias 16/10/2003 e 28/09/2008. In: Society of Exploration Geophysicists and Brazilian Geophysical Society. 12th International Congress of The Brazilian Geophysical Society & Expogef, Rio De Janeiro, Brazil, 15–18 August 2011. [S.L.], 2011. p. 2035–2038. Janjai, S., Wisitsirikun, S., Buntoung, S., Pattarapanitchai, S., Wattan, R., Masiri, I., Bhattarai, B. K., 2014. Comparison of UV Index From Ozone Monitoring Instrument (Omi) With Multi‐Channel Filter Radiometers At Four Sites In The Tropics: Effects of Aerosols and Clouds. International Journal of Climatology, v. 34, n. 2, p. 453-461. https://doi.org/10.1002/joc.3698 Kirchhoff, v. W. J. H., Schuch, n. J., Pinheiro, D. K., Harris, J. M., 1996. Evidence for an ozone hole perturbation at 30° south. Atmospheric Environment, v. 33, n. 9, p. 1481-1488. Krotkov, N. A., Carn, S. A., Krueger, A. J., Bhartia, P. K., Yang, K., 2006. Band Residual Difference algorithm for retrieval of so2 from the Aura Ozone Monitoring Instrument (OMI). Ieee Transactions On Geoscience and Remote Sensing, IEEE, v. 44, n. 5, p. 1259-1266. https://doi.org/10.1109/TGRS.2005.861932 Krzyścin, J. W., 1996. UV controlling factors and trends derived from the ground-based measurements taken at Belsk, Poland, 1976–1994. Journal of Geophysical Research: Atmospheres, Wiley Online Library, v. 101, n. D11, p. 16797–16805. Lamy, K., Portafaix, T., Brogniez, C., Godin-Beekmann, S., Bencherif, H., Morel, B., Pazmino, A., Metzger, J. M., Auriol, F., Deroo, C., Duflot, V., Goloub, P., and Long, C. N, 2018. Ultraviolet radiation modelling from ground-based and satellite measurements on Reunion Island, southern tropics, Atmospheric Chemistry Physics, 18, 227 -246, https://doi.org/10.5194/acp-18-227-2018. Lenzi, E; Favero, L. O. B. Introdução À Química Da Atmosfera: Ciência, Vida E Sobrevivência. Grupo Gen-Ltc, 2000. Levelt, P. F., Joiner, J., Tamminen, J., Veefkind, J. P., Bhartia, p. K., Zweers, D. C. S., Duncan, B. n., Streets, D.G., Eskes, H., Van Der, R. A., Mclinden, C., Fioletov, v., Carn, S., De Laat, J., Deland, M., Marchenko, S., Mcpeters, R., Ziemke, J., Fu, D., Liu, X., Pickering, K., Apituley, A., Abad, G. G., Arola, A., Boersma, F., Miller, C. C., Chance, K., De Graaf, M., Hakkarainen, J., Hassinen, S., Ialongo, I., Kleipool, Q., Krotkov, n., Li, C., Lamsal, L., Newman, P., Nowlan, C., Suleiman, R., Tilstra, L., G., Torres, O., Wang, H., Wargan, K., 2018. The Ozone Monitoring Instrument: Overview of 14 years in space. Atmospheric Chemistry and Physics, v. 18, n. 8, p. 5699-5745. https://doi.org/10.5194/acp-18-5699-2018 London, J. Observed Distribution of Atmospheric Ozone and Its Variations. In: Whitten, R. C., Prasad, S. S. Ed. Ozone In The Free Atmosphere. New York: Van Nostrand Reinhold. Cap. 1, p. 11–80. 1985. Lopo, A. B., Spyrides, M. H. C., Lucio, P. S., Sigró, J., 2013. radiação ultravioleta, ozônio total e aerossóis na cidade de Natal-Rn. Holos, v. 6, p. 3-21. Lu, J., Xie, F., Tian, W., Li, J., Feng, W., Chipperfield, M., Ma, X. Interannual Camp, Charles D., Roulston, Mark S.; Yung, Yuk L., 2019. Temporal and spatial patterns of the interannual variability of total ozone in the tropics. Journal of Geophysical Research: Atmospheres, v. 108, n. D20, 2003.Variations In Lower Stratospheric Ozone During The Period 1984–2016. Journal of Geophysical Research: Atmospheres, v. 124, n. 14, p. 8225-8241. Mariano, E. V. C, Mariano, G. L, Moura, M. A. L, 2017. Reações fotoquímicas na troposfera e estratosfera, in: Mariano, G. L, Nunes, A, B. Meteorologia em Tópicos: Volume 5. Clube dos Autores, Pelotas, pp. 171-200. Maycock, A., 2016. The contribution of ozone to future stratospheric temperature trends. Geophysical Research Letters, Wiley Online Library, v. 43, n. 9, p. 4609-4616. https://doi.org/10.1002/2016GL068511 McPeters, R., Frith, S., Labow, G., 2015. OMI total column ozone: extending the long-term data record. Atmospheric Measurement Techniques, Copernicus Gmbh, v. 8, n. 11, p. 4845–4850. https://doi.org/10.5194/amt-8-4845-2015 Mohanakumar, K. Stratosphere troposphere interactions: An introduction. Springer Netherlands, 2009. ISBN 9789048119424. Nozawa H., Yamamoto H., Makita, K., Schuch n. J., Pinheiro D. K., Carbone S., Mac-Mahon, R. M., Foppiano A. J., 2007. Ground-Based Observation of Solar UV Radiation In Japan, Brazil and Chile. Revista Brasileira De Geofísica, v. 25, p. 17-25. OMI Team Et Al. Ozone Monitoring Instrument (Omi) Data User’s Guide. Washington Dc: Nasa, 2012. Oberländer-Hayn, S., Gerber, E. P., Abalichin, J. A., Hideharu K., Andreas K., A, (2016). Is the Brewer-Dobson circulation increasing or moving upward? Geophysical Research Letters, 43, 1772-1779. https://doi.org/10.1002/2015GL067545 Peres, L. V., Reis, N. Cordero Simões Dos; Santos, L. De Oliveira Dos; Bittencourt, G. D., Schuch, A. P., Anabor, v., Pinheiro, D. K., Schuch, n. J., Leme, N. M. P., 2016. Análise atmosférica dos eventos de efeito secundário do buraco de ozônio antártico sobre o sul do Brasil em 2012. parte 1: identificação dos eventos e análise da dinâmica da estratosfera. Ciência E Natura, Universidade Federal De Santa Maria, v. 38, n. 1. Peres, L.V., Bencherif, H., Mbatha, n., Schuch, A.P., Toihir, A. M., Bègue, n., Portafaix, T., Anabor, V., Pinheiro, D. K; Leme, N. M. P., Bageston, J.V., Schuch, N. J., 2017. Measurements of the total ozone column using a Brewer spectrophotometer and TOMS and OMI satellite instruments over the southern space observatory in Brazil. Annales Geophysicae, v. 35, p. 25-37. https://doi.org/10.5194/angeo-35-25-2017 Peres, L. V., Pinheiro, D. K., Steffenel, L. A., Mendes, D., Bageston, J. v., Bittencourt, G. D., Schuch, A. P., Anabor, V., Leme, N. M. P., Schuch, N. J., 2019. Monitoramento de longo prazo e climatologia de campos estratosféricos quando da ocorrência dos eventos de influência do buraco de ozônio antártico sobre o sul do Brasil. Revista Brasileira De Meteorologia, Scielo Brasil, v. 34, n. 1, p. 151-163. https://doi.org/10.1590/0102-77863340030 Ploeger, F., Konopka, P., Mueller, R., Fueglistaler, S., Schmidt, T., Manners, J. C., Grooss, J. U., Guenther, G., Forster, p. M., Riese, M., 2012. Horizontal transport affecting trace gas seasonality in the Tropical Tropopause Layer (TTL). Journal of Geophysical Research: Atmospheres, v. 117, n. D09303. Polvani, L. M., Wang, L., Abalos, M., Butchart, n., Chipperfield, M. P., Dameris, M., Stone, K. A., 2019. Large impacts, past and future, of ozone-depleting substances on Brewer-Dobson circulation trends: A multimodel assessment. Journal of Geophysical Research: Atmospheres. v. 124, p. 6669–6680. https://doi.org/10.1029/2018JD029516 Polichtchouk, I., Shepherd, T. G., Hogan, R. J., Bechtold, P. , 2018. Sensitivity of The Brewer–Dobson circulation and polar vortex variability to parameterized nonorographic gravity wave drag in a high-resolution atmospheric model. Journal of the Atmospheric Sciences, v. 75, n. 5, p. 1525-1543. https://doi.org/10.1175/JAS-D-17-0304.1 Salby, M. L. Fundamentals of Atmospheric Physics. [S.L.]: Elsevier, 1996. Salby, M. L. Involvement of The Brewer–Dobson circulation in changes of stratospheric temperature and ozone. Dynamics of Atmospheres and Oceans, v. 44, n. 3-4, p. 143-164. Schmalfuss, L. S. M., Mariano, G. L., Pinheiro, D. K., & Peres, L. V. (2014). Análise dos dois principais fatores de decaimento da coluna total de Ozônio sobre o sul da América do Sul. Ciência e Natura, 36 (2), 415-422. Seinfeld, J. H., Pandis, S. N., 2016. Atmospheric Chemistry and Physics: From Air Pollution To Climate Change. John Wiley & Sons. Sliney, D. H. , 2007. Radiometric quantities and units used in photobiology and photochemistry: recommendations of the commission internationale de L’eclairage (International Commission On Illumination). Photochemistry and Photobiology, v. 83, n. 2, p. 425-432. https://doi.org/10.1562/2006-11-14-RA-1081 Shepherd, T. G., 2008. Dynamics, stratospheric ozone, and climate change. Atmosphere-Ocean, Taylor & Francis, v. 46, n. 1, p. 117–138. https://doi:10.3137/ao.460106 Slusser, J., Gibson, J., Bigelow, D., Kolinski, D., Mou, W., Koenig, G., Beaubien, A., 1999. Comparison of column ozone retrievals by use of an UV multifilter rotating shadow-band radiometer with those from Brewer and Dobson spectrophotometers. Applied Optics, Optical Society of America, v. 38, n. 9, p. 1543–1551. https://doi.org/10.1364/AO.38.001543 Solomon, S., Haskins, J., Ivy, D. J., Min, F., 2014. Fundamental differences between Arctic and Antarctic ozone depletion. Proceedings of the National Academy of Sciences, 111(17), 6220–6225. doi:10.1073/pnas.1319307111 Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely, R. R., & Schmidt, A. (2016). Emergence of healing in the Antarctic ozone layer. Science, 353(6296), 269–274.doi:10.1126/science.aae0061 Son, S. W., Gerber, E. P., Perlwitz, J., Polvani, L. M., Gillett, N. P., Seo, K. H., Austin, J. (2010). Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. Journal of Geophysical Research: Atmospheres, 115(D3). https://doi.org/10.1029/2010JD014271 Stohl, A., Wernli, H., Bourqui, M., Forster, C., James, P., Liniger, M. A., Seibert, P., Sprenger, M. 2003. A New perspective of Stratosphere-Troposphere Exchange. Bull. Amer. Meteor. Soc., v. 84, p. 1565-1573. https://doi.org/10.1175/BAMS-84-11-1565 Tanskanen, A., Lindfors, A., Määttä, A., Krotkov, N., Herman, J., Kaurola, J., McKenzie, R. (2007). Validation of daily erythemal doses from Ozone Monitoring Instrument with ground‐based UV measurement data. Journal of Geophysical Research: Atmospheres,112(D24). https://doi.org/10.1029/2007JD008830 Toihir, A. M., Portafaix, T., Sivakumar, v., Bencherif, H., Pazmiño, A., Bèngue, n. Variability and Trend In Ozone Over The Southern Tropics and Subtropics, Annales Geophysicae, 36, 381-404, 2018. https://doi.org/10.5194/angeo-36-381-2018 Thompson, D. W. J; Wallace, J. M., 2000. Annular Modes in the extratropical circulation. Part I: Month-to-month variability. Journal of Climate, v. 13, n. 5, p. 1000-1016. https://doi.org/10.1175/1520-0442 Vargin, P. N., Nikiforova, M. P., Zvyagintsev, A. M. 2020. Variability of the Antarctic ozone anomaly in 2011-2018. Russian Meteorology and Hydrology, 45(2), 63-73. doi:10.3103/S1068373920020016 Veefkind, J. P., Haan, J. F. De; Brinksma, E. J., Kroon, M., Levelt, P. F., 2006. Total Ozone from the Ozone Monitoring Instrument (OMI) Using The DOAS Technique. Ieee Transactions On Geoscience and Remote Sensing, Ieee, v. 44, n. 5, p. 1239–1244. Xie, F., Li, J., Tian, W., Zhang, J., & Shu, J., 2014. The impacts of two types of El Niño on global ozone variations in the last three decades. advances In Atmospheric Sciences, v. 31, n. 5, p. 1113-1126. https://10.1007/s00376-013-3166-0 Wakamatsu, S., Uno, I., Ueda, H., Uehara, K., Tateishi, H., 1989. Observational study of stratospheric ozone intrusions into the Lower Troposphere. Atmospheric Environment (1967), Elsevier, v. 23, n. 8, p. 18151826. Weber, M., Dikty, S., Burrows, J. P., Garny, H., Dameris, M., Kubin, A. J., Abalichin, J., Langematz, U., 2011. The Brewer-Dobson circulation and total ozone from seasonal to decadal time scales. Atmospheric Chemistry and Physics, v. 11, p. 11221–11235. https://doi.org/10.5194/acp-11-11221-2011 Wilks, D. S., 2006 Statistical Methods in The Atmospheric Science. California, Usa. 2ed. Academic Press. Wilson, R. C., Fleming, Z. L., Monks, p. S., Clain, G., Henne, S., Konovalov, I. B., Menut, L., 2011. Have primary emission reduction measures reduced ozone across Europe? An analysis of european rural background ozone trends 1996–2005. Atmospheric Chemistry and Physics Discuss, v. 11, p. 18433-18485. https://doi.org/10.5194/acp-12-437-2012 Young, P. J., Rosenlof, K. H., Solomon, S., Sherwood, S. C., Fu, Q., Lamarque, J. F., 2012. Changes in stratospheric temperatures and their implications for changes in the Brewer Dobson circulation, 1979-2005. Journal of Climate, v. 25, n. 5, p. 1759–1772. https://doi.org/10.1175/2011JCLI4048.1 Yamamoto, A. L. C., Corrêa, M. D. P., Ccoyllo, O. R. S., 2018. Validation and Analysis of UV Radiation Time Series Collected In Different Peruvian Sites. Revista Brasileira De Meteorologia, Scielo Brasil, V. 33, N. 2, P. 298–305. https://doi.org/10.1590/0102-7786332011. https://periodicos.ufpe.br/revistas/rbgfe/article/view/244554 doi:10.26848/rbgf.v13.5.p2053-2073 Direitos autorais 2020 Revista Brasileira de Geografia Física https://creativecommons.org/licenses/by/4.0 Brazilian Journal of Physical Geography; v. 13, n. 5 (2020): Revista Brasileira de Geografia Física; 2053-2073 Revista Brasileira de Geografia Física; v. 13, n. 5 (2020): Revista Brasileira de Geografia Física; 2053-2073 1984-2295 Meteorologia Sensoriamento Remoto Radiação Solar Sensor OMI Dose Eritêmica Diária info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2020 ftunifpernambojs https://doi.org/10.26848/rbgf.v13.5.p2053-207310.5194/acp-2019-896 2023-04-18T11:25:35Z O ozônio (O3) representa menos de 1% dos gases da atmosfera terrestre, entretanto, é indispensável para a vida na Terra, devido sua influência no balanço energético do planeta filtrando a Radiação Ultravioleta (RUV) do tipo UV-B, nociva à saúde. O objetivo geral deste trabalho é investigar o impacto da coluna total de ozônio sobre a variabilidade da RUV na América do Sul, utilizando dados diários de RUV e Coluna Total de Ozônio (CTO) do sensor Ozone Monitoring Instrument (OMI) da Aura/NASA (National Aeronautics and Space Administration). Na análise mensal, o valor médio da coluna total de ozônio para o decênio de 2005 a 2014 apresentou uma maior variabilidade no trimestre SON na região da América do Sul. A Análise de Componentes Principais mostrou que nos meses JJA e SON apresenta-se uma correlação direta entre CTO e RUV. As análises dos casos estudados comprovaram que apenas os baixos níveis de ozônio não são determinantes para os altos valores de RUV. Os meses entre julho e outubro apresentam grandes áreas no da América do Sul com forte correlação inversa apresentando regiões estatisticamente significantes. Os resultados exprimem a relação entre a CTO e RUV que dependente da sazonalidade nas diferentes regiões, entre outros fatores. Spatio-temporal variability of total ozone column and ultraviolet radiation: assessment of relationship in South America A B S T R A C T Ozone (O3) represents less than 1% of the earth's atmosphere gases, however, it is indispensable for life on Earth, due to its influence on the planet's energy balance as well as filtering out harmful UV-B type UVR-B the health. The general objective of this work is to investigate the impact of the total ozone column on UVR variability in South America, using daily Aura/NASA Ozone Monitoring Instrument (OMI) sensor and Total Column Ozone (TOC) data daily. National Aeronautics and Space Administration). In the monthly analysis, the average value of the total ozone column for the decade from 2005 to 2014 showed a greater variability in the SON ... Article in Journal/Newspaper Arctic Portal de Periódicos - UFPE (Universidade Federal de Pernambuco) Revista Brasileira de Geografia Física 13 5 2053